This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325196 #12 Apr 24 2019 10:11:27 %S A325196 3,4,9,10,12,15,18,20,42,45,50,60,63,70,75,84,90,100,105,126,140,150, %T A325196 294,315,330,350,420,441,462,490,495,525,550,588,630,660,693,700,735, %U A325196 770,825,882,924,980,990,1050,1100,1155,1386,1470,1540,1650,2730,3234 %N A325196 Heinz numbers of integer partitions such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 1. %C A325196 The enumeration of these partitions by sum is given by A325191. %H A325196 Gus Wiseman, <a href="/A325196/a325196.png">Young diagrams for their first 60 terms</a>. %H A325196 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000783">St000783: The maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram</a> %H A325196 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000384">St000384: The maximal part of the shifted composition of an integer partition</a>. %e A325196 The sequence of terms together with their prime indices begins: %e A325196 3: {2} %e A325196 4: {1,1} %e A325196 9: {2,2} %e A325196 10: {1,3} %e A325196 12: {1,1,2} %e A325196 15: {2,3} %e A325196 18: {1,2,2} %e A325196 20: {1,1,3} %e A325196 42: {1,2,4} %e A325196 45: {2,2,3} %e A325196 50: {1,3,3} %e A325196 60: {1,1,2,3} %e A325196 63: {2,2,4} %e A325196 70: {1,3,4} %e A325196 75: {2,3,3} %e A325196 84: {1,1,2,4} %e A325196 90: {1,2,2,3} %e A325196 100: {1,1,3,3} %e A325196 105: {2,3,4} %e A325196 126: {1,2,2,4} %t A325196 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325196 otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; %t A325196 otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; %t A325196 Select[Range[1000],otbmax[primeptn[#]]-otb[primeptn[#]]==1&] %Y A325196 Cf. A060687, A065770, A256617, A325166, A325169, A325179, A325181, A325183, A325185, A325188, A325189, A325191, A325195, A325200. %K A325196 nonn %O A325196 1,1 %A A325196 _Gus Wiseman_, Apr 11 2019