A325197 Heinz numbers of integer partitions such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 2.
5, 8, 14, 21, 24, 25, 27, 28, 35, 36, 40, 54, 56, 66, 98, 99, 110, 120, 125, 132, 135, 147, 154, 165, 168, 175, 180, 189, 196, 198, 200, 220, 225, 231, 245, 250, 252, 264, 270, 275, 280, 297, 300, 308, 375, 378, 385, 390, 392, 396, 440, 450, 500, 546, 585, 594
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 5: {3} 8: {1,1,1} 14: {1,4} 21: {2,4} 24: {1,1,1,2} 25: {3,3} 27: {2,2,2} 28: {1,1,4} 35: {3,4} 36: {1,1,2,2} 40: {1,1,1,3} 54: {1,2,2,2} 56: {1,1,1,4} 66: {1,2,5} 98: {1,4,4} 99: {2,2,5} 110: {1,3,5} 120: {1,1,1,2,3} 125: {3,3,3} 132: {1,1,2,5}
Links
Crossrefs
Programs
-
Mathematica
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; Select[Range[1000],otbmax[primeptn[#]]-otb[primeptn[#]]==2&]
Comments