This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325198 #14 Feb 28 2020 22:53:50 %S A325198 10,20,21,30,40,50,55,60,63,80,90,91,100,105,120,147,150,160,180,187, %T A325198 189,200,240,247,250,270,275,300,315,320,360,385,391,400,441,450,480, %U A325198 500,525,540,551,567,600,605,637,640,713,720,735,750,800,810,900,945 %N A325198 Positive numbers whose maximum prime index minus minimum prime index is 2. %C A325198 Also Heinz numbers of integer partitions whose maximum minus minimum part is 2 (counted by A008805). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A325198 Robert Israel, <a href="/A325198/b325198.txt">Table of n, a(n) for n = 1..10000</a> %e A325198 The sequence of terms together with their prime indices begins: %e A325198 10: {1,3} %e A325198 20: {1,1,3} %e A325198 21: {2,4} %e A325198 30: {1,2,3} %e A325198 40: {1,1,1,3} %e A325198 50: {1,3,3} %e A325198 55: {3,5} %e A325198 60: {1,1,2,3} %e A325198 63: {2,2,4} %e A325198 80: {1,1,1,1,3} %e A325198 90: {1,2,2,3} %e A325198 91: {4,6} %e A325198 100: {1,1,3,3} %e A325198 105: {2,3,4} %e A325198 120: {1,1,1,2,3} %e A325198 147: {2,4,4} %e A325198 150: {1,2,3,3} %e A325198 160: {1,1,1,1,1,3} %e A325198 180: {1,1,2,2,3} %e A325198 187: {5,7} %p A325198 N:= 1000: # for terms <= N %p A325198 q:= 2: r:= 3: %p A325198 Res:= NULL: %p A325198 do %p A325198 p:= q; q:= r; r:= nextprime(r); %p A325198 if p*r > N then break fi; %p A325198 for i from 1 do %p A325198 pi:= p^i; %p A325198 if pi*r > N then break fi; %p A325198 for j from 0 do %p A325198 piqj:= pi*q^j; %p A325198 if piqj*r > N then break fi; %p A325198 Res:= Res, seq(piqj*r^k,k=1 .. floor(log[r](N/piqj))) %p A325198 od %p A325198 od %p A325198 od: %p A325198 sort([Res]); # _Robert Israel_, Apr 12 2019 %t A325198 Select[Range[100],PrimePi[FactorInteger[#][[-1,1]]]-PrimePi[FactorInteger[#][[1,1]]]==2&] %Y A325198 Positions of 2's in A243055. %Y A325198 A061395(a(n)) - A055396((n)) = 2. %Y A325198 Cf. A000961, A008805, A046660, A056239, A093641, A112798, A118914, A174090, A195086, A256617, A325180, A325197. %K A325198 nonn %O A325198 1,1 %A A325198 _Gus Wiseman_, Apr 11 2019