cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325198 Positive numbers whose maximum prime index minus minimum prime index is 2.

This page as a plain text file.
%I A325198 #14 Feb 28 2020 22:53:50
%S A325198 10,20,21,30,40,50,55,60,63,80,90,91,100,105,120,147,150,160,180,187,
%T A325198 189,200,240,247,250,270,275,300,315,320,360,385,391,400,441,450,480,
%U A325198 500,525,540,551,567,600,605,637,640,713,720,735,750,800,810,900,945
%N A325198 Positive numbers whose maximum prime index minus minimum prime index is 2.
%C A325198 Also Heinz numbers of integer partitions whose maximum minus minimum part is 2 (counted by A008805). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A325198 Robert Israel, <a href="/A325198/b325198.txt">Table of n, a(n) for n = 1..10000</a>
%e A325198 The sequence of terms together with their prime indices begins:
%e A325198    10: {1,3}
%e A325198    20: {1,1,3}
%e A325198    21: {2,4}
%e A325198    30: {1,2,3}
%e A325198    40: {1,1,1,3}
%e A325198    50: {1,3,3}
%e A325198    55: {3,5}
%e A325198    60: {1,1,2,3}
%e A325198    63: {2,2,4}
%e A325198    80: {1,1,1,1,3}
%e A325198    90: {1,2,2,3}
%e A325198    91: {4,6}
%e A325198   100: {1,1,3,3}
%e A325198   105: {2,3,4}
%e A325198   120: {1,1,1,2,3}
%e A325198   147: {2,4,4}
%e A325198   150: {1,2,3,3}
%e A325198   160: {1,1,1,1,1,3}
%e A325198   180: {1,1,2,2,3}
%e A325198   187: {5,7}
%p A325198 N:= 1000: # for terms <= N
%p A325198 q:= 2: r:= 3:
%p A325198 Res:= NULL:
%p A325198 do
%p A325198   p:= q; q:= r; r:= nextprime(r);
%p A325198   if p*r > N then break fi;
%p A325198   for i from 1 do
%p A325198     pi:= p^i;
%p A325198     if pi*r > N then break fi;
%p A325198     for j from 0 do
%p A325198       piqj:= pi*q^j;
%p A325198       if piqj*r > N then break fi;
%p A325198       Res:= Res, seq(piqj*r^k,k=1 .. floor(log[r](N/piqj)))
%p A325198     od
%p A325198   od
%p A325198 od:
%p A325198 sort([Res]); # _Robert Israel_, Apr 12 2019
%t A325198 Select[Range[100],PrimePi[FactorInteger[#][[-1,1]]]-PrimePi[FactorInteger[#][[1,1]]]==2&]
%Y A325198 Positions of 2's in A243055.
%Y A325198 A061395(a(n)) - A055396((n)) = 2.
%Y A325198 Cf. A000961, A008805, A046660, A056239, A093641, A112798, A118914, A174090, A195086, A256617, A325180, A325197.
%K A325198 nonn
%O A325198 1,1
%A A325198 _Gus Wiseman_, Apr 11 2019