This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325199 #14 Apr 23 2019 11:14:48 %S A325199 0,0,0,2,0,2,6,3,2,9,15,12,6,12,27,38,34,22,20,43,74,94,90,67,48,69, %T A325199 130,194,232,230,187,132,129,218,364,497,576,578,498,367,290,378,642, %U A325199 977,1264,1435,1448,1290,1000,735,728 %N A325199 Number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 2. %C A325199 The Heinz numbers of these partitions are given by A325197. %H A325199 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000384">St000384: The maximal part of the shifted composition of an integer partition</a> %H A325199 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000783">St000783: The maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram</a> %e A325199 The a(3) = 2 through a(10) = 15 partitions (empty columns not shown): %e A325199 (3) (41) (33) (43) (521) (333) (433) %e A325199 (111) (2111) (42) (2221) (32111) (441) (442) %e A325199 (222) (4111) (522) (532) %e A325199 (411) (531) (541) %e A325199 (2211) (3222) (3322) %e A325199 (3111) (5211) (3331) %e A325199 (32211) (4222) %e A325199 (33111) (4411) %e A325199 (42111) (5221) %e A325199 (5311) %e A325199 (32221) %e A325199 (33211) %e A325199 (42211) %e A325199 (43111) %e A325199 (52111) %t A325199 otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; %t A325199 otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; %t A325199 Table[Length[Select[IntegerPartitions[n],otbmax[#]-otb[#]==2&]],{n,0,30}] %Y A325199 Column k=2 of A325200. %Y A325199 Cf. A046660, A065770, A071724, A243055, A325166, A325169, A325178, A325188, A325189, A325191, A325195, A325197, A325198. %K A325199 nonn,look %O A325199 0,4 %A A325199 _Gus Wiseman_, Apr 11 2019