A325205 a(n) is the number of labeled rooted trees on a set of size n where each node has at most 6 neighbors that are further away from the root than the node itself.
0, 1, 2, 9, 64, 625, 7776, 117649, 2097144, 43046136, 999970020, 25936053990, 742947675624, 23295384644532, 793591829158128, 29187143427692250, 1152639088016576160, 48646833059722978080, 2185150741063924810176, 104085328898784937079376, 5240461483486301616704160
Offset: 0
Links
- B. Otto, Coalescence under Preimage Constraints, arXiv:1903.00542 [math.CO], 2019, Corollaries 5.3 and 7.8.
Crossrefs
Column k=6 of A325201; see that entry for sequences related to other preimage constraints constructions.
Programs
-
Python
# print first num_entries entries in the sequence import math, sympy; x=sympy.symbols('x') k=6; num_entries = 64 P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [0,1]; curr_pow = eP for term in range(1,num_entries-1): curr_pow=(curr_pow*eP).expand() r.append(curr_pow.coeff(x**term)*math.factorial(term)) print(r)
Formula
a(n) = (n-1)! * [x^(n-1)] e_6(x)^n, where e_k(x) is the truncated exponential 1 + x + x^2/2! + ... + x^k/k!. The link above yields explicit constants c_k, r_k so that the columns are asymptotically c_6 * n^(-3/2) * r_6^-n.
Comments