cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325227 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the lesser of the maximum part and the number of parts is k.

This page as a plain text file.
%I A325227 #6 Apr 13 2019 08:11:29
%S A325227 0,0,1,0,2,0,0,2,1,0,0,2,3,0,0,0,2,4,1,0,0,0,2,6,3,0,0,0,0,2,6,6,1,0,
%T A325227 0,0,0,2,8,9,3,0,0,0,0,0,2,8,13,6,1,0,0,0,0,0,2,10,16,11,3,0,0,0,0,0,
%U A325227 0,2,10,20,17,6,1,0,0,0,0,0,0
%N A325227 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the lesser of the maximum part and the number of parts is k.
%H A325227 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000533">St000533: The maximal number of non-attacking rooks on a Ferrers shape</a>
%e A325227 Triangle begins:
%e A325227   1
%e A325227   2  0
%e A325227   2  1  0
%e A325227   2  3  0  0
%e A325227   2  4  1  0  0
%e A325227   2  6  3  0  0  0
%e A325227   2  6  6  1  0  0  0
%e A325227   2  8  9  3  0  0  0  0
%e A325227   2  8 13  6  1  0  0  0  0
%e A325227   2 10 16 11  3  0  0  0  0  0
%e A325227   2 10 20 17  6  1  0  0  0  0  0
%e A325227   2 12 24 25 11  3  0  0  0  0  0  0
%e A325227   2 12 28 33 19  6  1  0  0  0  0  0  0
%e A325227   2 14 32 44 29 11  3  0  0  0  0  0  0  0
%e A325227   2 14 38 53 43 19  6  1  0  0  0  0  0  0  0
%e A325227 Row n = 9 counts the following partitions:
%e A325227   (9)          (54)        (333)      (4221)    (51111)
%e A325227   (111111111)  (63)        (432)      (4311)
%e A325227                (72)        (441)      (5211)
%e A325227                (81)        (522)      (6111)
%e A325227                (22221)     (531)      (42111)
%e A325227                (222111)    (621)      (411111)
%e A325227                (2211111)   (711)
%e A325227                (21111111)  (3222)
%e A325227                            (3321)
%e A325227                            (32211)
%e A325227                            (33111)
%e A325227                            (321111)
%e A325227                            (3111111)
%t A325227 Table[Length[Select[IntegerPartitions[n],Min[Length[#],Max[#]]==k&]],{n,15},{k,n}]
%Y A325227 Column k = 2 is A265283. Column k = 3 is A325228.
%Y A325227 Cf. A051924, A096771, A115720, A263297, A325188, A325189, A325192, A325193, A325194, A325224, A325225, A325229, A325232.
%K A325227 nonn,tabl
%O A325227 1,5
%A A325227 _Gus Wiseman_, Apr 12 2019