cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325228 Number of integer partitions of n such that the lesser of the maximum part and the number of parts is 3.

This page as a plain text file.
%I A325228 #4 Apr 13 2019 08:11:36
%S A325228 0,0,0,0,1,3,6,9,13,16,20,24,28,32,38,42,48,54,60,66,74,80,88,96,104,
%T A325228 112,122,130,140,150,160,170,182,192,204,216,228,240,254,266,280,294,
%U A325228 308,322,338,352,368,384,400,416,434,450,468,486,504,522,542,560
%N A325228 Number of integer partitions of n such that the lesser of the maximum part and the number of parts is 3.
%e A325228 The a(5) = 1 through a(10) = 16 partitions:
%e A325228   (311)  (321)   (322)    (332)     (333)      (433)
%e A325228          (411)   (331)    (422)     (432)      (442)
%e A325228          (3111)  (421)    (431)     (441)      (532)
%e A325228                  (511)    (521)     (522)      (541)
%e A325228                  (3211)   (611)     (531)      (622)
%e A325228                  (31111)  (3221)    (621)      (631)
%e A325228                           (3311)    (711)      (721)
%e A325228                           (32111)   (3222)     (811)
%e A325228                           (311111)  (3321)     (3322)
%e A325228                                     (32211)    (3331)
%e A325228                                     (33111)    (32221)
%e A325228                                     (321111)   (33211)
%e A325228                                     (3111111)  (322111)
%e A325228                                                (331111)
%e A325228                                                (3211111)
%e A325228                                                (31111111)
%t A325228 Table[Length[Select[IntegerPartitions[n],Min[Length[#],Max[#]]==3&]],{n,30}]
%Y A325228 Column k = 3 of A325227.
%Y A325228 Cf. A051924, A096771, A115720, A265283, A325224, A325225, A325229, A325231, A325232.
%K A325228 nonn
%O A325228 1,6
%A A325228 _Gus Wiseman_, Apr 12 2019