This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325229 #5 Apr 13 2019 08:11:43 %S A325229 6,9,10,12,14,15,18,21,22,24,25,26,27,33,34,35,36,38,39,46,48,49,51, %T A325229 54,55,57,58,62,65,69,72,74,77,81,82,85,86,87,91,93,94,95,96,106,108, %U A325229 111,115,118,119,121,122,123,129,133,134,141,142,143,144,145,146 %N A325229 Heinz numbers of integer partitions such that lesser of the maximum part and the number of parts is 2. %C A325229 The enumeration of these partitions by sum is given by A265283. %C A325229 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A325229 The sequence of terms together with their prime indices begins: %e A325229 6: {1,2} %e A325229 9: {2,2} %e A325229 10: {1,3} %e A325229 12: {1,1,2} %e A325229 14: {1,4} %e A325229 15: {2,3} %e A325229 18: {1,2,2} %e A325229 21: {2,4} %e A325229 22: {1,5} %e A325229 24: {1,1,1,2} %e A325229 25: {3,3} %e A325229 26: {1,6} %e A325229 27: {2,2,2} %e A325229 33: {2,5} %e A325229 34: {1,7} %e A325229 35: {3,4} %e A325229 36: {1,1,2,2} %e A325229 38: {1,8} %e A325229 39: {2,6} %e A325229 46: {1,9} %t A325229 Select[Range[300],Min[PrimeOmega[#],PrimePi[FactorInteger[#][[-1,1]]]]==2&] %Y A325229 Cf. A056239, A061395, A093641, A112798, A252464, A257541, A263297, A265283, A325224, A325225, A325227, A325230, A325232. %K A325229 nonn %O A325229 1,1 %A A325229 _Gus Wiseman_, Apr 12 2019