cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325229 Heinz numbers of integer partitions such that lesser of the maximum part and the number of parts is 2.

This page as a plain text file.
%I A325229 #5 Apr 13 2019 08:11:43
%S A325229 6,9,10,12,14,15,18,21,22,24,25,26,27,33,34,35,36,38,39,46,48,49,51,
%T A325229 54,55,57,58,62,65,69,72,74,77,81,82,85,86,87,91,93,94,95,96,106,108,
%U A325229 111,115,118,119,121,122,123,129,133,134,141,142,143,144,145,146
%N A325229 Heinz numbers of integer partitions such that lesser of the maximum part and the number of parts is 2.
%C A325229 The enumeration of these partitions by sum is given by A265283.
%C A325229 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A325229 The sequence of terms together with their prime indices begins:
%e A325229     6: {1,2}
%e A325229     9: {2,2}
%e A325229    10: {1,3}
%e A325229    12: {1,1,2}
%e A325229    14: {1,4}
%e A325229    15: {2,3}
%e A325229    18: {1,2,2}
%e A325229    21: {2,4}
%e A325229    22: {1,5}
%e A325229    24: {1,1,1,2}
%e A325229    25: {3,3}
%e A325229    26: {1,6}
%e A325229    27: {2,2,2}
%e A325229    33: {2,5}
%e A325229    34: {1,7}
%e A325229    35: {3,4}
%e A325229    36: {1,1,2,2}
%e A325229    38: {1,8}
%e A325229    39: {2,6}
%e A325229    46: {1,9}
%t A325229 Select[Range[300],Min[PrimeOmega[#],PrimePi[FactorInteger[#][[-1,1]]]]==2&]
%Y A325229 Cf. A056239, A061395, A093641, A112798, A252464, A257541, A263297, A265283, A325224, A325225, A325227, A325230, A325232.
%K A325229 nonn
%O A325229 1,1
%A A325229 _Gus Wiseman_, Apr 12 2019