This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325231 #8 Apr 16 2019 17:31:21 %S A325231 6,10,12,14,22,24,26,34,38,46,48,58,62,74,82,86,94,96,106,118,122,134, %T A325231 142,146,158,166,178,192,194,202,206,214,218,226,254,262,274,278,298, %U A325231 302,314,326,334,346,358,362,382,384,386,394,398,422,446,454,458,466 %N A325231 Numbers of the form 2 * p or 3 * 2^k, p prime, k > 1. %C A325231 Also numbers n such that the sum of prime indices of n minus the greater of the number of prime factors of n counted with multiplicity and the largest prime index of n is 1. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, and their sum is A056239. %H A325231 Chai Wah Wu, <a href="/A325231/b325231.txt">Table of n, a(n) for n = 1..10000</a> %e A325231 The sequence of terms together with their prime indices begins: %e A325231 6: {1,2} %e A325231 10: {1,3} %e A325231 12: {1,1,2} %e A325231 14: {1,4} %e A325231 22: {1,5} %e A325231 24: {1,1,1,2} %e A325231 26: {1,6} %e A325231 34: {1,7} %e A325231 38: {1,8} %e A325231 46: {1,9} %e A325231 48: {1,1,1,1,2} %e A325231 58: {1,10} %e A325231 62: {1,11} %e A325231 74: {1,12} %e A325231 82: {1,13} %e A325231 86: {1,14} %e A325231 94: {1,15} %e A325231 96: {1,1,1,1,1,2} %e A325231 106: {1,16} %e A325231 118: {1,17} %t A325231 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325231 Select[Range[100],Total[primeMS[#]]-Max[Length[primeMS[#]],Max[primeMS[#]]]==1&] %o A325231 (Python) %o A325231 from sympy import isprime %o A325231 A325231_list = [n for n in range(6,10**6) if ((not n % 2) and isprime(n//2)) or (bin(n)[2:4] == '11' and bin(n).count('1') == 2)] # _Chai Wah Wu_, Apr 16 2019 %Y A325231 Positions of 1's in A325223. %Y A325231 Cf. A001222, A056239, A060687, A061395, A093641, A112798, A174090, A257541, A265283, A325224, A325225, A325227, A325232. %K A325231 nonn %O A325231 1,1 %A A325231 _Gus Wiseman_, Apr 13 2019