cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325232 Number of integer partitions (of any nonnegative integer) whose sum minus the lesser of their maximum part and their number of parts is n.

This page as a plain text file.
%I A325232 #6 Apr 15 2019 01:38:03
%S A325232 2,3,6,10,18,27,44,64,97,138,200,276,390,528,724,968,1301,1712,2266,
%T A325232 2946,3842,4947,6372,8122,10362,13094,16544,20754,26010,32392,40308,
%U A325232 49876,61648,75845,93178,114006,139308,169586,206158,249814,302267,364664,439330
%N A325232 Number of integer partitions (of any nonnegative integer) whose sum minus the lesser of their maximum part and their number of parts is n.
%H A325232 Giovanni Resta, <a href="/A325232/b325232.txt">Table of n, a(n) for n = 0..75</a>
%H A325232 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000533">St000533: The maximal number of non-attacking rooks on a Ferrers shape</a>
%F A325232 For n > 0, a(n) = Sum_{k > 0} A325227(n + k, k).
%e A325232 The a(0) = 1 through a(4) = 18 partitions:
%e A325232   ()   (2)   (3)    (4)     (5)
%e A325232   (1)  (11)  (22)   (32)    (33)
%e A325232        (21)  (31)   (41)    (42)
%e A325232              (111)  (221)   (51)
%e A325232              (211)  (321)   (222)
%e A325232              (311)  (411)   (322)
%e A325232                     (1111)  (331)
%e A325232                     (2111)  (421)
%e A325232                     (3111)  (511)
%e A325232                     (4111)  (2211)
%e A325232                             (3211)
%e A325232                             (4211)
%e A325232                             (5111)
%e A325232                             (11111)
%e A325232                             (21111)
%e A325232                             (31111)
%e A325232                             (41111)
%e A325232                             (51111)
%t A325232 nn=30;
%t A325232 mindif[ptn_]:=If[ptn=={},0,Total[ptn]-Min[Length[ptn],Max[ptn]]];
%t A325232 allip=Array[IntegerPartitions,2*nn+2,0,Join];
%t A325232 Table[Length[Select[allip,mindif[#]==n&]],{n,0,nn}]
%Y A325232 Number of times n appears in A325224.
%Y A325232 Cf. A051924, A257541, A263297, A325193, A325194, A325224, A325225, A325227.
%K A325232 nonn
%O A325232 0,1
%A A325232 _Gus Wiseman_, Apr 13 2019
%E A325232 More terms from _Giovanni Resta_, Apr 15 2019