This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325233 #7 Apr 13 2019 22:16:45 %S A325233 3,10,15,25,28,42,63,70,88,98,105,132,147,175,198,208,220,245,297,308, %T A325233 312,330,343,462,468,484,495,520,544,550,693,702,726,728,770,780,816, %U A325233 825,1053,1078,1089,1092,1144,1155,1170,1210,1216,1224,1300,1352,1360 %N A325233 Heinz numbers of integer partitions with Dyson rank 1. %C A325233 Numbers whose maximum prime index is one greater than their number of prime indices counted with multiplicity. %C A325233 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A325233 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000145">St000145: The Dyson rank of a partition</a> %e A325233 The sequence of terms together with their prime indices begins: %e A325233 3: {2} %e A325233 10: {1,3} %e A325233 15: {2,3} %e A325233 25: {3,3} %e A325233 28: {1,1,4} %e A325233 42: {1,2,4} %e A325233 63: {2,2,4} %e A325233 70: {1,3,4} %e A325233 88: {1,1,1,5} %e A325233 98: {1,4,4} %e A325233 105: {2,3,4} %e A325233 132: {1,1,2,5} %e A325233 147: {2,4,4} %e A325233 175: {3,3,4} %e A325233 198: {1,2,2,5} %e A325233 208: {1,1,1,1,6} %e A325233 220: {1,1,3,5} %e A325233 245: {3,4,4} %e A325233 297: {2,2,2,5} %e A325233 308: {1,1,4,5} %t A325233 Select[Range[1000],PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]==1&] %Y A325233 Positions of 1's in A257541. %Y A325233 Cf. A001222, A047993, A056239, A061395, A063995, A101198, A106529, A112798, A257990, A263297, A325225, A325234, A325235. %K A325233 nonn %O A325233 1,1 %A A325233 _Gus Wiseman_, Apr 13 2019