cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325233 Heinz numbers of integer partitions with Dyson rank 1.

This page as a plain text file.
%I A325233 #7 Apr 13 2019 22:16:45
%S A325233 3,10,15,25,28,42,63,70,88,98,105,132,147,175,198,208,220,245,297,308,
%T A325233 312,330,343,462,468,484,495,520,544,550,693,702,726,728,770,780,816,
%U A325233 825,1053,1078,1089,1092,1144,1155,1170,1210,1216,1224,1300,1352,1360
%N A325233 Heinz numbers of integer partitions with Dyson rank 1.
%C A325233 Numbers whose maximum prime index is one greater than their number of prime indices counted with multiplicity.
%C A325233 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A325233 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000145">St000145: The Dyson rank of a partition</a>
%e A325233 The sequence of terms together with their prime indices begins:
%e A325233      3: {2}
%e A325233     10: {1,3}
%e A325233     15: {2,3}
%e A325233     25: {3,3}
%e A325233     28: {1,1,4}
%e A325233     42: {1,2,4}
%e A325233     63: {2,2,4}
%e A325233     70: {1,3,4}
%e A325233     88: {1,1,1,5}
%e A325233     98: {1,4,4}
%e A325233    105: {2,3,4}
%e A325233    132: {1,1,2,5}
%e A325233    147: {2,4,4}
%e A325233    175: {3,3,4}
%e A325233    198: {1,2,2,5}
%e A325233    208: {1,1,1,1,6}
%e A325233    220: {1,1,3,5}
%e A325233    245: {3,4,4}
%e A325233    297: {2,2,2,5}
%e A325233    308: {1,1,4,5}
%t A325233 Select[Range[1000],PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]==1&]
%Y A325233 Positions of 1's in A257541.
%Y A325233 Cf. A001222, A047993, A056239, A061395, A063995, A101198, A106529, A112798, A257990, A263297, A325225, A325234, A325235.
%K A325233 nonn
%O A325233 1,1
%A A325233 _Gus Wiseman_, Apr 13 2019