This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325235 #6 Apr 13 2019 22:16:59 %S A325235 3,4,10,12,15,18,25,27,28,40,42,60,63,70,88,90,98,100,105,112,132,135, %T A325235 147,150,168,175,198,208,220,225,245,250,252,280,297,308,312,330,343, %U A325235 352,375,378,392,420,462,468,484,495,520,528,544,550,567,588,625,630 %N A325235 Heinz numbers of integer partitions with Dyson rank 1 or -1. %C A325235 Numbers whose maximum prime index and number of prime indices counted with multiplicity differ by 1. %C A325235 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A325235 FindStat, <a href="http://www.findstat.org/StatisticsDatabase/St000145">St000145: The Dyson rank of a partition</a> %e A325235 The sequence of terms together with their prime indices begins: %e A325235 3: {2} %e A325235 4: {1,1} %e A325235 10: {1,3} %e A325235 12: {1,1,2} %e A325235 15: {2,3} %e A325235 18: {1,2,2} %e A325235 25: {3,3} %e A325235 27: {2,2,2} %e A325235 28: {1,1,4} %e A325235 40: {1,1,1,3} %e A325235 42: {1,2,4} %e A325235 60: {1,1,2,3} %e A325235 63: {2,2,4} %e A325235 70: {1,3,4} %e A325235 88: {1,1,1,5} %e A325235 90: {1,2,2,3} %e A325235 98: {1,4,4} %e A325235 100: {1,1,3,3} %e A325235 105: {2,3,4} %e A325235 112: {1,1,1,1,4} %t A325235 Select[Range[1000],Abs[PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]]==1&] %Y A325235 Positions of 1's and -1's in A257541. %Y A325235 Cf. A001222, A047993, A056239, A061395, A063995, A101198, A106529, A112798, A257990, A263297, A325225, A325233, A325234. %K A325235 nonn %O A325235 1,1 %A A325235 _Gus Wiseman_, Apr 13 2019