A325237 Squarefree k such that 1/2 - phi(k)/k is positive and minimal for k with gpf(k) = prime(n).
2, 6, 10, 105, 165, 195, 4641, 5187, 5313, 266133, 8870433, 3068957045, 11063481, 10164297, 667797009, 909411789, 32221169781185, 1963007211216415, 421522466365, 3012887561310445
Offset: 1
Keywords
Examples
First terms of this sequence appear in the chart below between asterisks. The values of n appear in the header, values of k followed parenthetically by phi(k)/k appear in column n. The x axis plots k according to primepi(gpf(k)), while the y axis plots k according to phi(k)/k: 0 1 2 3 4 . . . . . --- 1 ------------------------------------------------ (1/1) . . . . . . . . . . . . . . . . . . 7 . . . 5 (6/7) . . . (4/5) . . . . . . . . . . 35 . . 3 . (24/35) . . (2/3) . . . . . . . . . . . . . . . . 21 . . . . (4/7) . . . 15 . . . . (8/15) . . *2* . . . ----------(1/2)--------------------------------------- . . . . . . . . . *105* . . . . (16/35) . . . . 14 . . . *10* (3/7) . . . (2/5) . . . . . . . . . . 70 . . *6* . (12/35) . . (1/3) . . . . . . 42 . . . 30 (2/7) . . . (4/15) . . . . . 210 . . . . (8/35) ... a(3) = 10 for the following reasons. There are 4 possible values of k with n = 3. These are 5, 15, 10, and 30 with phi(k)/k = 4/5, 8/15, 2/5, and 4/15, respectively. Subtracting each of the latter values from 1/2, we derive -3/10, -1/30, 1/10, and 7/30 respectively. Since the smallest of these differences is 1/10 pertaining to k = 10, a(3) = 10.
Links
- Michael De Vlieger, Plot of A325237(n) among terms in row n of A307540.
Crossrefs
Programs
-
Mathematica
With[{e = 20}, Map[MinimalBy[#, If[# > 0, # + 1, Abs@ #] &[#[[2]] - 1/2] &] &, SplitBy[#, Last]] &@ Array[{#2, EulerPhi[#2]/#2, If[! IntegerQ@ #, 0, #] &[1 + Floor@ Log2@ #1]} & @@ {#, Times @@ MapIndexed[Prime[First@ #2]^#1 &, Reverse@ IntegerDigits[#, 2]]} &, 2^e - 1]][[All, 1, 1]]
Comments