This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325240 #14 Oct 02 2024 12:25:35 %S A325240 4,9,25,36,49,72,100,108,121,144,169,196,200,225,288,289,324,361,392, %T A325240 400,441,484,500,529,576,675,676,784,800,841,900,961,968,972,1089, %U A325240 1125,1152,1156,1225,1323,1352,1369,1372,1444,1521,1568,1600,1681,1764,1800 %N A325240 Numbers whose minimum prime exponent is 2. %C A325240 Or barely powerful numbers, a subset of powerful numbers A001694. %C A325240 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose minimum multiplicity is 2 (counted by A244515). %C A325240 Powerful numbers (A001694) that are not cubefull (A036966). - _Amiram Eldar_, Jan 30 2023 %H A325240 Amiram Eldar, <a href="/A325240/b325240.txt">Table of n, a(n) for n = 1..10000</a> %F A325240 Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Product_{p prime} (1 + 1/(p^2*(p-1))) = A082695 - A065483 = 0.6038122832... . - _Amiram Eldar_, Jan 30 2023 %e A325240 The sequence of terms together with their prime indices begins: %e A325240 4: {1,1} %e A325240 9: {2,2} %e A325240 25: {3,3} %e A325240 36: {1,1,2,2} %e A325240 49: {4,4} %e A325240 72: {1,1,1,2,2} %e A325240 100: {1,1,3,3} %e A325240 108: {1,1,2,2,2} %e A325240 121: {5,5} %e A325240 144: {1,1,1,1,2,2} %e A325240 169: {6,6} %e A325240 196: {1,1,4,4} %e A325240 200: {1,1,1,3,3} %e A325240 225: {2,2,3,3} %e A325240 288: {1,1,1,1,1,2,2} %e A325240 289: {7,7} %e A325240 324: {1,1,2,2,2,2} %e A325240 361: {8,8} %e A325240 392: {1,1,1,4,4} %e A325240 400: {1,1,1,1,3,3} %t A325240 Select[Range[1000],Min@@FactorInteger[#][[All,2]]==2&] %o A325240 (PARI) is(n)={my(e=factor(n)[,2]); n>1 && vecmin(e) == 2; } \\ _Amiram Eldar_, Jan 30 2023 %o A325240 (Python) %o A325240 from math import isqrt, gcd %o A325240 from sympy import integer_nthroot, factorint, mobius %o A325240 def A325240(n): %o A325240 def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A325240 def bisection(f,kmin=0,kmax=1): %o A325240 while f(kmax) > kmax: kmax <<= 1 %o A325240 while kmax-kmin > 1: %o A325240 kmid = kmax+kmin>>1 %o A325240 if f(kmid) <= kmid: %o A325240 kmax = kmid %o A325240 else: %o A325240 kmin = kmid %o A325240 return kmax %o A325240 def f(x): %o A325240 c, l = n+x, 0 %o A325240 j = isqrt(x) %o A325240 while j>1: %o A325240 k2 = integer_nthroot(x//j**2,3)[0]+1 %o A325240 w = squarefreepi(k2-1) %o A325240 c -= j*(w-l) %o A325240 l, j = w, isqrt(x//k2**3) %o A325240 c -= squarefreepi(integer_nthroot(x,3)[0])-l %o A325240 for w in range(1,integer_nthroot(x,5)[0]+1): %o A325240 if all(d<=1 for d in factorint(w).values()): %o A325240 for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1): %o A325240 if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()): %o A325240 c += integer_nthroot(z//y**4,3)[0] %o A325240 return c %o A325240 return bisection(f,n,n**2) # _Chai Wah Wu_, Oct 02 2024 %Y A325240 Positions of 2's in A051904. %Y A325240 Maximum instead of minimum gives A067259. %Y A325240 Cf. A001221, A001222, A001358, A001694, A007774, A036966, A051903, A052485, A118914, A244515, A325241. %Y A325240 Cf. A065483, A082695. %K A325240 nonn %O A325240 1,1 %A A325240 _Gus Wiseman_, Apr 15 2019