This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325241 #16 Jan 30 2023 02:39:58 %S A325241 12,18,20,28,44,45,50,52,60,63,68,72,75,76,84,90,92,98,99,108,116,117, %T A325241 124,126,132,140,147,148,150,153,156,164,171,172,175,180,188,198,200, %U A325241 204,207,212,220,228,234,236,242,244,245,252,260,261,268,275,276,279 %N A325241 Numbers > 1 whose maximum prime exponent is one greater than their minimum. %C A325241 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose maximum multiplicity is one greater than their minimum (counted by A325279). %C A325241 The asymptotic density of this sequence is 1/zeta(3) - 1/zeta(2) = A088453 - A059956 = 0.22398... . - _Amiram Eldar_, Jan 30 2023 %H A325241 Michael S. Branicky, <a href="/A325241/b325241.txt">Table of n, a(n) for n = 1..10000</a> %F A325241 A051903(a(n)) - A051904(a(n)) = 1. %e A325241 The sequence of terms together with their prime indices begins: %e A325241 12: {1,1,2} %e A325241 18: {1,2,2} %e A325241 20: {1,1,3} %e A325241 28: {1,1,4} %e A325241 44: {1,1,5} %e A325241 45: {2,2,3} %e A325241 50: {1,3,3} %e A325241 52: {1,1,6} %e A325241 60: {1,1,2,3} %e A325241 63: {2,2,4} %e A325241 68: {1,1,7} %e A325241 72: {1,1,1,2,2} %e A325241 75: {2,3,3} %e A325241 76: {1,1,8} %e A325241 84: {1,1,2,4} %e A325241 90: {1,2,2,3} %e A325241 92: {1,1,9} %e A325241 98: {1,4,4} %e A325241 99: {2,2,5} %t A325241 Select[Range[100],Max@@FactorInteger[#][[All,2]]-Min@@FactorInteger[#][[All,2]]==1&] %t A325241 Select[Range[300], Min[e = FactorInteger[#][[;; , 2]]] +1 == Max[e] &] (* _Amiram Eldar_, Jan 30 2023 *) %o A325241 (Python) %o A325241 from sympy import factorint %o A325241 def ok(n): %o A325241 e = sorted(factorint(n).values()) %o A325241 return n > 1 and max(e) == 1 + min(e) %o A325241 print([k for k in range(280) if ok(k)]) # _Michael S. Branicky_, Dec 18 2021 %o A325241 (PARI) is(n)={my(e=factor(n)[,2]); n>1 && vecmin(e) + 1 == vecmax(e); } \\ _Amiram Eldar_, Jan 30 2023 %Y A325241 Positions of 1's in A062977. Supersequence of A054753, A096156. %Y A325241 Cf. A001221, A001222, A001694, A051903, A051904, A052485, A056239, A112798, A118914, A325240, A325259, A325270, A325279. %Y A325241 Cf. A059956, A088453. %K A325241 nonn %O A325241 1,1 %A A325241 _Gus Wiseman_, Apr 15 2019