This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325247 #10 Aug 22 2019 09:53:58 %S A325247 1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,36,37,41,43,47,49, %T A325247 53,59,61,64,67,71,73,79,81,83,89,97,100,101,103,107,109,113,121,125, %U A325247 127,128,131,137,139,149,151,157,163,167,169,173,179,181,191,193 %N A325247 Numbers whose omega-sequence is strict (no repeated parts). %C A325247 First differs from A323306 in having 216. %C A325247 We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1). %C A325247 Also Heinz numbers of integer partitions of whose omega-sequence is strict (counted by A325250). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A325247 The sequence of terms together with their prime indices begins: %e A325247 1: {} %e A325247 2: {1} %e A325247 3: {2} %e A325247 4: {1,1} %e A325247 5: {3} %e A325247 7: {4} %e A325247 8: {1,1,1} %e A325247 9: {2,2} %e A325247 11: {5} %e A325247 13: {6} %e A325247 16: {1,1,1,1} %e A325247 17: {7} %e A325247 19: {8} %e A325247 23: {9} %e A325247 25: {3,3} %e A325247 27: {2,2,2} %e A325247 29: {10} %e A325247 31: {11} %e A325247 32: {1,1,1,1,1} %e A325247 36: {1,1,2,2} %t A325247 omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#1]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]]; %t A325247 Select[Range[100],UnsameQ@@omseq[#]&] %Y A325247 Positions of squarefree numbers in A325248. %Y A325247 Cf. A056239, A112798, A118914, A181819, A323023, A325249, A325250, A325251, A325277. %Y A325247 Omega-sequence statistics: A001221 (second omega), A001222 (first omega), A071625 (third omega), A304465 (second-to-last omega), A182850 or A323014 (depth), A323022 (fourth omega), A325248 (Heinz number). %K A325247 nonn %O A325247 1,2 %A A325247 _Gus Wiseman_, Apr 16 2019