cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325251 Numbers whose omega-sequence covers an initial interval of positive integers.

This page as a plain text file.
%I A325251 #8 Aug 22 2019 09:53:36
%S A325251 1,2,3,4,5,6,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23,25,26,28,29,
%T A325251 31,33,34,35,37,38,39,41,43,44,45,46,47,49,50,51,52,53,55,57,58,59,60,
%U A325251 61,62,63,65,67,68,69,71,73,74,75,76,77,79,82,83,84,85,86
%N A325251 Numbers whose omega-sequence covers an initial interval of positive integers.
%C A325251 We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
%C A325251 The enumeration of these partitions by sum is given by A325260.
%e A325251 The sequence of terms together with their omega sequences begins:
%e A325251    1:              31: 1             63: 3 2 2 1
%e A325251    2: 1            33: 2 2 1         65: 2 2 1
%e A325251    3: 1            34: 2 2 1         67: 1
%e A325251    4: 2 1          35: 2 2 1         68: 3 2 2 1
%e A325251    5: 1            37: 1             69: 2 2 1
%e A325251    6: 2 2 1        38: 2 2 1         71: 1
%e A325251    7: 1            39: 2 2 1         73: 1
%e A325251    9: 2 1          41: 1             74: 2 2 1
%e A325251   10: 2 2 1        43: 1             75: 3 2 2 1
%e A325251   11: 1            44: 3 2 2 1       76: 3 2 2 1
%e A325251   12: 3 2 2 1      45: 3 2 2 1       77: 2 2 1
%e A325251   13: 1            46: 2 2 1         79: 1
%e A325251   14: 2 2 1        47: 1             82: 2 2 1
%e A325251   15: 2 2 1        49: 2 1           83: 1
%e A325251   17: 1            50: 3 2 2 1       84: 4 3 2 2 1
%e A325251   18: 3 2 2 1      51: 2 2 1         85: 2 2 1
%e A325251   19: 1            52: 3 2 2 1       86: 2 2 1
%e A325251   20: 3 2 2 1      53: 1             87: 2 2 1
%e A325251   21: 2 2 1        55: 2 2 1         89: 1
%e A325251   22: 2 2 1        57: 2 2 1         90: 4 3 2 2 1
%e A325251   23: 1            58: 2 2 1         91: 2 2 1
%e A325251   25: 2 1          59: 1             92: 3 2 2 1
%e A325251   26: 2 2 1        60: 4 3 2 2 1     93: 2 2 1
%e A325251   28: 3 2 2 1      61: 1             94: 2 2 1
%e A325251   29: 1            62: 2 2 1         95: 2 2 1
%t A325251 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
%t A325251 omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
%t A325251 Select[Range[100],normQ[omseq[#]]&]
%Y A325251 Positions of normal numbers (A055932) in A325248.
%Y A325251 Cf. A000430, A055932, A056239, A112798, A181819, A323023, A325247, A325260, A325261, A325277.
%Y A325251 Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).
%K A325251 nonn
%O A325251 1,2
%A A325251 _Gus Wiseman_, Apr 16 2019