cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325253 Number of integer partitions of n with adjusted frequency depth ceiling(sqrt(n)).

This page as a plain text file.
%I A325253 #4 Apr 23 2019 09:20:47
%S A325253 1,1,1,1,2,2,4,4,6,8,17,26,25,44,53,63,83,128,168,212,273,344,429,525,
%T A325253 662,796,684,910,1211,1595,2060,2663,3406,4315,5426,6784,8417,0,0,0,0,
%U A325253 0,1,5,14,36,76,143,269,446,0,0,0,0,0,0,0,0,0,0,0
%N A325253 Number of integer partitions of n with adjusted frequency depth ceiling(sqrt(n)).
%C A325253 The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
%e A325253 The a(2) = 1 through a(11) = 26 partitions:
%e A325253     11  111  22    32  42    43   53    54      433        443
%e A325253              1111  41  51    52   62    63      442        533
%e A325253                        321   61   71    72      622        551
%e A325253                        2211  421  431   81      811        722
%e A325253                                   521   432     3331       911
%e A325253                                   3311  531     4222       3332
%e A325253                                         621     7111       5222
%e A325253                                         222111  61111      8111
%e A325253                                                 222211     32222
%e A325253                                                 322111     33311
%e A325253                                                 331111     44111
%e A325253                                                 511111     71111
%e A325253                                                 2221111    222221
%e A325253                                                 4111111    322211
%e A325253                                                 22111111   332111
%e A325253                                                 31111111   422111
%e A325253                                                 211111111  611111
%e A325253                                                            2222111
%e A325253                                                            3221111
%e A325253                                                            3311111
%e A325253                                                            5111111
%e A325253                                                            22211111
%e A325253                                                            41111111
%e A325253                                                            221111111
%e A325253                                                            311111111
%e A325253                                                            2111111111
%t A325253 fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
%t A325253 Table[Length[Select[IntegerPartitions[n],fdadj[#]==Ceiling[Sqrt[n]]&]],{n,0,30}]
%Y A325253 Cf. A117571, A181819, A225485, A323014, A323023, A325245, A325246, A325252, A325258, A325271, A325278, A325280, A325282.
%K A325253 nonn
%O A325253 0,5
%A A325253 _Gus Wiseman_, Apr 22 2019