This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325254 #15 Sep 13 2023 22:48:02 %S A325254 0,1,1,1,1,3,3,1,3,7,10,17,27,38,1,4,8,17,31,52,83,122,181,257,361, %T A325254 499,684,910,1211,1595,2060,2663,3406,4315,5426,6784,8417,10466,12824, %U A325254 15721,19104,23267,1,5,14,36,76,143,269,446,738,1143,1754,2570,3742,5269 %N A325254 Number of integer partitions of n with the maximum adjusted frequency depth for partitions of n. %C A325254 The Heinz numbers of these partitions are given by A325283. %C A325254 The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is given by A323014. The maximum adjusted frequency depth for integer partitions of n is given by A325282. %C A325254 Essentially, the last numbers of rows of the array in A225485. - _Clark Kimberling_, Sep 13 2022 %e A325254 The a(1) = 1 through a(11) = 17 partitions: %e A325254 1 11 21 211 221 411 3211 3221 3321 5221 4322 %e A325254 311 3111 4211 4221 5311 4331 %e A325254 2111 21111 32111 4311 6211 4421 %e A325254 5211 32221 5411 %e A325254 32211 33211 6221 %e A325254 42111 42211 6311 %e A325254 321111 43111 7211 %e A325254 52111 33221 %e A325254 421111 42221 %e A325254 3211111 43211 %e A325254 52211 %e A325254 53111 %e A325254 62111 %e A325254 431111 %e A325254 521111 %e A325254 4211111 %e A325254 32111111 %t A325254 nn=30; %t A325254 fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]]; %t A325254 mfds=Table[Max@@fdadj/@IntegerPartitions[n],{n,nn}]; %t A325254 Table[Length[Select[IntegerPartitions[n],fdadj[#]==mfds[[n]]&]],{n,0,nn}] %Y A325254 Cf. A011784, A181819, A182850, A182857, A225486, A323014, A323023, A325246, A325258, A325278, A325281, A325282, A325283. %Y A325254 Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth). %K A325254 nonn %O A325254 0,6 %A A325254 _Gus Wiseman_, Apr 16 2019