This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325256 #7 Apr 18 2019 16:54:29 %S A325256 1,1,1,2,3,10,12,12,44,128,228,422,968,1750,420,2100 %N A325256 Number of normal multisets of size n whose adjusted frequency depth is the maximum for multisets of that size. %C A325256 A multiset is normal if its union is an initial interval of positive integers. %C A325256 The adjusted frequency depth of a multiset is 0 if the multiset is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the multiset {1,1,2,2,3} has adjusted frequency depth 5 because we have {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}. The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is A323014(n). %e A325256 The a(1) = 1 through a(7) = 12 multisets: %e A325256 {1} {12} {112} {1123} {11123} {111123} {1112234} %e A325256 {122} {1223} {11223} {111234} {1112334} %e A325256 {1233} {11233} {112345} {1112344} %e A325256 {11234} {122223} {1122234} %e A325256 {12223} {122234} {1123334} %e A325256 {12233} {122345} {1123444} %e A325256 {12234} {123333} {1222334} %e A325256 {12333} {123334} {1222344} %e A325256 {12334} {123345} {1223334} %e A325256 {12344} {123444} {1223444} %e A325256 {123445} {1233344} %e A325256 {123455} {1233444} %t A325256 nn=10; %t A325256 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A325256 fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]]; %t A325256 mfdm=Table[Max@@fdadj/@allnorm[n],{n,0,nn}]; %t A325256 Table[Length[Select[allnorm[n],fdadj[#]==mfdm[[n+1]]&]],{n,0,nn}] %Y A325256 Cf. A011784, A181819, A182857, A225486, A323014, A323023, A325238, A325254, A325258, A325277, A325278, A325280, A325282, A325283. %K A325256 nonn,more %O A325256 0,4 %A A325256 _Gus Wiseman_, Apr 18 2019