cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325257 a(1) = 1; a(n) = Sum_{d|n, d prime(n/d) * a(d).

This page as a plain text file.
%I A325257 #17 Sep 08 2022 08:46:24
%S A325257 1,3,5,16,11,43,17,88,48,95,31,320,41,145,157,486,59,554,67,696,243,
%T A325257 265,83,2204,218,347,458,1062,109,1961,127,2668,447,493,523,5044,157,
%U A325257 565,577,4780,179,3021,191,1938,1998,697,211,14590,516,2538,823,2526,241,6622,939
%N A325257 a(1) = 1; a(n) = Sum_{d|n, d<n} prime(n/d) * a(d).
%F A325257 G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} prime(k) * A(x^k).
%t A325257 a[n_] := If[n == 1, n, Sum[If[d < n, Prime[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 55}]
%t A325257 nmax = 55; A[_] = 0; Do[A[x_] = x + Sum[Prime[k] A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
%o A325257 (PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n] = sumdiv(n, d, v[d]*prime(n/d))); v} \\ _Andrew Howroyd_, Sep 05 2019
%o A325257 (Magma) sol:=[1]; for n in [2..60] do Append(~sol,&+[NthPrime(Floor(n/d))*sol[d]:d in Set(Divisors(n)) diff {n}]); end for; sol; // _Marius A. Burtea_, Sep 05 2019
%Y A325257 Cf. A000040, A007445, A008966 (parity of a(n)), A034696.
%K A325257 nonn
%O A325257 1,2
%A A325257 _Ilya Gutkovskiy_, Sep 05 2019