cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325259 Numbers with one fewer distinct prime exponents than distinct prime factors.

This page as a plain text file.
%I A325259 #4 Apr 18 2019 16:54:35
%S A325259 6,10,14,15,21,22,26,33,34,35,36,38,39,46,51,55,57,58,60,62,65,69,74,
%T A325259 77,82,84,85,86,87,90,91,93,94,95,100,106,111,115,118,119,120,122,123,
%U A325259 126,129,132,133,134,140,141,142,143,145,146,150,155,156,158,159
%N A325259 Numbers with one fewer distinct prime exponents than distinct prime factors.
%C A325259 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with one fewer distinct multiplicities than distinct parts. The enumeration of these partitions by sum is given by A325244.
%F A325259 A001221(a(n)) = A071625(a(n)) + 1.
%e A325259 The sequence of terms together with their prime indices begins:
%e A325259     6: {1,2}
%e A325259    10: {1,3}
%e A325259    14: {1,4}
%e A325259    15: {2,3}
%e A325259    21: {2,4}
%e A325259    22: {1,5}
%e A325259    26: {1,6}
%e A325259    33: {2,5}
%e A325259    34: {1,7}
%e A325259    35: {3,4}
%e A325259    36: {1,1,2,2}
%e A325259    38: {1,8}
%e A325259    39: {2,6}
%e A325259    46: {1,9}
%e A325259    51: {2,7}
%e A325259    55: {3,5}
%e A325259    57: {2,8}
%e A325259    58: {1,10}
%e A325259    60: {1,1,2,3}
%e A325259    62: {1,11}
%t A325259 Select[Range[100],PrimeNu[#]==Length[Union[Last/@FactorInteger[#]]]+1&]
%Y A325259 Cf. A056239, A060687, A090858, A112798, A116608, A118914, A130091, A323023, A325241, A325242, A325244, A325270, A325281.
%K A325259 nonn
%O A325259 1,1
%A A325259 _Gus Wiseman_, Apr 18 2019