This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325259 #4 Apr 18 2019 16:54:35 %S A325259 6,10,14,15,21,22,26,33,34,35,36,38,39,46,51,55,57,58,60,62,65,69,74, %T A325259 77,82,84,85,86,87,90,91,93,94,95,100,106,111,115,118,119,120,122,123, %U A325259 126,129,132,133,134,140,141,142,143,145,146,150,155,156,158,159 %N A325259 Numbers with one fewer distinct prime exponents than distinct prime factors. %C A325259 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with one fewer distinct multiplicities than distinct parts. The enumeration of these partitions by sum is given by A325244. %F A325259 A001221(a(n)) = A071625(a(n)) + 1. %e A325259 The sequence of terms together with their prime indices begins: %e A325259 6: {1,2} %e A325259 10: {1,3} %e A325259 14: {1,4} %e A325259 15: {2,3} %e A325259 21: {2,4} %e A325259 22: {1,5} %e A325259 26: {1,6} %e A325259 33: {2,5} %e A325259 34: {1,7} %e A325259 35: {3,4} %e A325259 36: {1,1,2,2} %e A325259 38: {1,8} %e A325259 39: {2,6} %e A325259 46: {1,9} %e A325259 51: {2,7} %e A325259 55: {3,5} %e A325259 57: {2,8} %e A325259 58: {1,10} %e A325259 60: {1,1,2,3} %e A325259 62: {1,11} %t A325259 Select[Range[100],PrimeNu[#]==Length[Union[Last/@FactorInteger[#]]]+1&] %Y A325259 Cf. A056239, A060687, A090858, A112798, A116608, A118914, A130091, A323023, A325241, A325242, A325244, A325270, A325281. %K A325259 nonn %O A325259 1,1 %A A325259 _Gus Wiseman_, Apr 18 2019