This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325260 #9 Jan 13 2021 14:18:54 %S A325260 1,1,2,2,4,5,5,8,10,12,13,18,19,24,25,31,33,40,40,49,51,59,60,71,72, %T A325260 83,84,96,98,111,111,126,128,142,143,160,161,178,179,197,199,218,218, %U A325260 239,241,261,262,285,286,309,310,334,336,361,361,388,390,416,417,446 %N A325260 Number of integer partitions of n whose omega-sequence covers an initial interval of positive integers. %C A325260 The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1). %C A325260 The Heinz numbers of these partitions are given by A325251. %F A325260 a(n) + A325262(n) = A000041(n). %F A325260 Conjectures from _Chai Wah Wu_, Jan 13 2021: (Start) %F A325260 a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n > 9. %F A325260 G.f.: (-x^9 - x^8 - x^7 + x^6 - x^5 - x^2 - x - 1)/((x - 1)^3*(x + 1)^2*(x^2 + 1)*(x^2 + x + 1)). (End) %e A325260 The a(1) = 1 through a(9) = 12 partitions: %e A325260 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A325260 (11) (21) (22) (32) (33) (43) (44) (54) %e A325260 (31) (41) (42) (52) (53) (63) %e A325260 (211) (221) (51) (61) (62) (72) %e A325260 (311) (411) (322) (71) (81) %e A325260 (331) (332) (441) %e A325260 (511) (422) (522) %e A325260 (3211) (611) (711) %e A325260 (3221) (3321) %e A325260 (4211) (4221) %e A325260 (4311) %e A325260 (5211) %t A325260 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; %t A325260 omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]; %t A325260 Table[Length[Select[IntegerPartitions[n],normQ[omseq[#]]&]],{n,0,30}] %Y A325260 Cf. A055932, A181819, A182850, A225486, A323014, A323023, A325250, A325251, A325262, A325277. %Y A325260 Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth). %K A325260 nonn %O A325260 0,3 %A A325260 _Gus Wiseman_, Apr 16 2019