cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325265 Numbers with sum of omega-sequence > 4.

This page as a plain text file.
%I A325265 #4 Apr 18 2019 16:54:50
%S A325265 6,10,12,14,15,16,18,20,21,22,24,26,28,30,32,33,34,35,36,38,39,40,42,
%T A325265 44,45,46,48,50,51,52,54,55,56,57,58,60,62,63,64,65,66,68,69,70,72,74,
%U A325265 75,76,77,78,80,81,82,84,85,86,87,88,90,91,92,93,94,95,96
%N A325265 Numbers with sum of omega-sequence > 4.
%C A325265 We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
%e A325265 The sequence of terms together with their omega-sequences begins:
%e A325265    6: 2 2 1       46: 2 2 1         80: 5 2 2 1       112: 5 2 2 1
%e A325265   10: 2 2 1       48: 5 2 2 1       81: 4 1           114: 3 3 1
%e A325265   12: 3 2 2 1     50: 3 2 2 1       82: 2 2 1         115: 2 2 1
%e A325265   14: 2 2 1       51: 2 2 1         84: 4 3 2 2 1     116: 3 2 2 1
%e A325265   15: 2 2 1       52: 3 2 2 1       85: 2 2 1         117: 3 2 2 1
%e A325265   16: 4 1         54: 4 2 2 1       86: 2 2 1         118: 2 2 1
%e A325265   18: 3 2 2 1     55: 2 2 1         87: 2 2 1         119: 2 2 1
%e A325265   20: 3 2 2 1     56: 4 2 2 1       88: 4 2 2 1       120: 5 3 2 2 1
%e A325265   21: 2 2 1       57: 2 2 1         90: 4 3 2 2 1     122: 2 2 1
%e A325265   22: 2 2 1       58: 2 2 1         91: 2 2 1         123: 2 2 1
%e A325265   24: 4 2 2 1     60: 4 3 2 2 1     92: 3 2 2 1       124: 3 2 2 1
%e A325265   26: 2 2 1       62: 2 2 1         93: 2 2 1         126: 4 3 2 2 1
%e A325265   28: 3 2 2 1     63: 3 2 2 1       94: 2 2 1         128: 7 1
%e A325265   30: 3 3 1       64: 6 1           95: 2 2 1         129: 2 2 1
%e A325265   32: 5 1         65: 2 2 1         96: 6 2 2 1       130: 3 3 1
%e A325265   33: 2 2 1       66: 3 3 1         98: 3 2 2 1       132: 4 3 2 2 1
%e A325265   34: 2 2 1       68: 3 2 2 1       99: 3 2 2 1       133: 2 2 1
%e A325265   35: 2 2 1       69: 2 2 1        100: 4 2 1         134: 2 2 1
%e A325265   36: 4 2 1       70: 3 3 1        102: 3 3 1         135: 4 2 2 1
%e A325265   38: 2 2 1       72: 5 2 2 1      104: 4 2 2 1       136: 4 2 2 1
%e A325265   39: 2 2 1       74: 2 2 1        105: 3 3 1         138: 3 3 1
%e A325265   40: 4 2 2 1     75: 3 2 2 1      106: 2 2 1         140: 4 3 2 2 1
%e A325265   42: 3 3 1       76: 3 2 2 1      108: 5 2 2 1       141: 2 2 1
%e A325265   44: 3 2 2 1     77: 2 2 1        110: 3 3 1         142: 2 2 1
%e A325265   45: 3 2 2 1     78: 3 3 1        111: 2 2 1         143: 2 2 1
%t A325265 omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
%t A325265 Select[Range[100],Total[omseq[#]]>4&]
%Y A325265 Positions of terms > 4 in A325249.
%Y A325265 Numbers with omega-sequence summing to m: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
%Y A325265 Cf. A056239, A060687, A062770, A118914, A130091, A303555, A323023, A325238, A325277.
%Y A325265 Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).
%K A325265 nonn
%O A325265 1,1
%A A325265 _Gus Wiseman_, Apr 18 2019