cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325268 Triangle read by rows where T(n,k) is the number of integer partitions of n with omicron k.

This page as a plain text file.
%I A325268 #12 Jan 19 2023 11:10:24
%S A325268 1,0,1,0,1,1,0,1,1,1,0,1,3,0,1,0,1,5,0,0,1,0,1,7,2,0,0,1,0,1,12,1,0,0,
%T A325268 0,1,0,1,17,2,1,0,0,0,1,0,1,24,4,0,0,0,0,0,1,0,1,33,5,1,1,0,0,0,0,1,0,
%U A325268 1,44,9,1,0,0,0,0,0,0,1,0,1,57,14,3,0,1
%N A325268 Triangle read by rows where T(n,k) is the number of integer partitions of n with omicron k.
%C A325268 The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. The omicron of the partition is 0 if the omega-sequence is empty, 1 if it is a singleton, and otherwise the second-to-last part. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1), and its omicron is 2.
%H A325268 Andrew Howroyd, <a href="/A325268/b325268.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%e A325268 Triangle begins:
%e A325268   1
%e A325268   0  1
%e A325268   0  1  1
%e A325268   0  1  1  1
%e A325268   0  1  3  0  1
%e A325268   0  1  5  0  0  1
%e A325268   0  1  7  2  0  0  1
%e A325268   0  1 12  1  0  0  0  1
%e A325268   0  1 17  2  1  0  0  0  1
%e A325268   0  1 24  4  0  0  0  0  0  1
%e A325268   0  1 33  5  1  1  0  0  0  0  1
%e A325268   0  1 44  9  1  0  0  0  0  0  0  1
%e A325268   0  1 57 14  3  0  1  0  0  0  0  0  1
%e A325268   0  1 76 20  3  0  0  0  0  0  0  0  0  1
%e A325268 Row n = 8 counts the following partitions.
%e A325268   (8)  (44)       (431)  (2222)  (11111111)
%e A325268        (53)       (521)
%e A325268        (62)
%e A325268        (71)
%e A325268        (332)
%e A325268        (422)
%e A325268        (611)
%e A325268        (3221)
%e A325268        (3311)
%e A325268        (4211)
%e A325268        (5111)
%e A325268        (22211)
%e A325268        (32111)
%e A325268        (41111)
%e A325268        (221111)
%e A325268        (311111)
%e A325268        (2111111)
%t A325268 Table[Length[Select[IntegerPartitions[n],Switch[#,{},0,{_},1,_,NestWhile[Sort[Length/@Split[#]]&,#,Length[#]>1&]//First]==k&]],{n,0,10},{k,0,n}]
%o A325268 (PARI)
%o A325268 omicron(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); r=#p; for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L); r)}
%o A325268 row(n)={my(v=vector(1+n)); forpart(p=n, v[1 + omicron(Vec(p))]++); v}
%o A325268 { for(n=0, 10, print(row(n))) } \\ _Andrew Howroyd_, Jan 18 2023
%Y A325268 Row sums are A000041. Column k = 2 is A325267.
%Y A325268 Cf. A181819, A181821, A304634, A304636, A323014, A323023, A325250, A325273, A325277.
%Y A325268 Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).
%Y A325268 Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).
%K A325268 nonn,tabl
%O A325268 0,13
%A A325268 _Gus Wiseman_, Apr 18 2019