cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325269 Number of integer partitions of n with 2 distinct parts or at least 3 parts.

Original entry on oeis.org

0, 0, 0, 2, 3, 6, 9, 14, 20, 29, 40, 55, 75, 100, 133, 175, 229, 296, 383, 489, 625, 791, 1000, 1254, 1573, 1957, 2434, 3009, 3716, 4564, 5602, 6841, 8347, 10142, 12308, 14882, 17975, 21636, 26013, 31184, 37336, 44582, 53172, 63260, 75173, 89133, 105556
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A080257.
Partitions with 2 distinct parts are in A002133(n). Partitions with at least 3 parts are in A004250(n). Some partitions are in both subsets, so A002133(n)+A004250(n) >= a(n). - R. J. Mathar, Dec 13 2022

Examples

			The a(1) = 1 through a(8) = 20 partitions:
  (21)   (31)    (32)     (42)      (43)       (53)
  (111)  (211)   (41)     (51)      (52)       (62)
         (1111)  (221)    (222)     (61)       (71)
                 (311)    (321)     (322)      (332)
                 (2111)   (411)     (331)      (422)
                 (11111)  (2211)    (421)      (431)
                          (3111)    (511)      (521)
                          (21111)   (2221)     (611)
                          (111111)  (3211)     (2222)
                                    (4111)     (3221)
                                    (22111)    (3311)
                                    (31111)    (4211)
                                    (211111)   (5111)
                                    (1111111)  (22211)
                                               (32111)
                                               (41111)
                                               (221111)
                                               (311111)
                                               (2111111)
                                               (11111111)
		

Crossrefs

Programs

  • Maple
    A325269 := proc(n)
        local a,p,s ;
        a := 0 ;
        for p in combinat[partition](n) do
            s := convert(p,set) ;
            if nops(p) >= 3 or nops(s) = 2 then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A325269(n),n=0..40) ; # R. J. Mathar, Dec 13 2022
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[#]]==2||Length[#]>2&]],{n,0,30}]

Formula

conjecture: a(n) = A000041(n) - A000034(n-1), n>0. - R. J. Mathar, Dec 13 2022