This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325270 #11 Jul 05 2019 04:05:01 %S A325270 4,6,9,10,12,14,15,18,20,21,22,25,26,28,33,34,35,38,39,44,45,46,49,50, %T A325270 51,52,55,57,58,62,63,65,68,69,74,75,76,77,82,85,86,87,91,92,93,94,95, %U A325270 98,99,106,111,115,116,117,118,119,121,122,123,124,129,133 %N A325270 Numbers with 1 fewer distinct prime exponents than (not necessarily distinct) prime factors. %C A325270 Also Heinz numbers of integer partitions with 1 fewer distinct multiplicities than parts, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The enumeration of these partitions by sum is given by A117571. %C A325270 Also numbers whose sorted prime signature is (1,1), (2), or (1,2). - _Gus Wiseman_, Jul 03 2019 %e A325270 The sequence of terms together with their prime indices begins: %e A325270 4: {1,1} %e A325270 6: {1,2} %e A325270 9: {2,2} %e A325270 10: {1,3} %e A325270 12: {1,1,2} %e A325270 14: {1,4} %e A325270 15: {2,3} %e A325270 18: {1,2,2} %e A325270 20: {1,1,3} %e A325270 21: {2,4} %e A325270 22: {1,5} %e A325270 25: {3,3} %e A325270 26: {1,6} %e A325270 28: {1,1,4} %e A325270 33: {2,5} %e A325270 34: {1,7} %e A325270 35: {3,4} %e A325270 38: {1,8} %e A325270 39: {2,6} %e A325270 44: {1,1,5} %t A325270 Select[Range[100],PrimeOmega[#]==Length[Union[Last/@FactorInteger[#]]]+1&] %Y A325270 Cf. A001221, A001222, A000961, A005117, A060687, A062770, A071625, A072774, A090858, A117571, A118914, A130091, A325244, A325259. %K A325270 nonn %O A325270 1,1 %A A325270 _Gus Wiseman_, Apr 18 2019