This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325273 #14 Apr 18 2021 03:09:59 %S A325273 0,0,1,2,2,2,3,2,2,2,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %T A325273 2,2,2,2,2,3,3,3,3,3,2,2,2,2,2,2,2,3,3,3,3,2,2,2,3,3,3,3,2,2,2,2,2,2, %U A325273 2,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2 %N A325273 Prime omicron of n!. %C A325273 We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1). %C A325273 The prime omicron of n (A304465) is 0 if n is 1, 1 if n is prime, and otherwise the second-to-last part of the omega-sequence of n. For example, the prime omicron of 180 is 2. %C A325273 Conjecture: all terms after a(10) = 4 are less than 4. %C A325273 From _James Rayman_, Apr 17 2021: (Start) %C A325273 The conjecture is false. a(3804) = 4. In fact, there are 91 values of n < 10000 such that a(n) = 4. %C A325273 The first value of n such that a(n) = 5 is 37934. For any other n < 5*10^5, a(n) < 5. (End) %H A325273 James Rayman, <a href="/A325273/b325273.txt">Table of n, a(n) for n = 0..10000</a> %t A325273 omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]]; %t A325273 omicron[n_]:=Switch[n,1,0,_?PrimeQ,1,_,omseq[n][[-2]]]; %t A325273 Table[omicron[n!],{n,0,100}] %o A325273 (Python) %o A325273 from sympy.ntheory import * %o A325273 def red(v): %o A325273 r = {} %o A325273 for i in v: r[i] = r.get(i, 0) + 1 %o A325273 return r %o A325273 def omicron(v): %o A325273 if len(v) == 0: return 0 %o A325273 if len(v) == 1: return v[0] %o A325273 else: return omicron(list(red(v).values())) %o A325273 f, a_list = {}, [] %o A325273 for i in range(101): %o A325273 a_list.append(omicron(list(f.values()))) %o A325273 g = factorint(i+1) %o A325273 for k in g: f[k] = f.get(k, 0) + g[k] %o A325273 print(a_list) # _James Rayman_, Apr 17 2021 %Y A325273 a(n) = A055396(A325275(n)/2). %Y A325273 Cf. A000142, A006939, A303555, A323023, A325238, A325272, A325274, A325275, A325276, A325277. %Y A325273 Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum). %K A325273 nonn %O A325273 0,4 %A A325273 _Gus Wiseman_, Apr 18 2019 %E A325273 More terms from _James Rayman_, Apr 17 2021