cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325277 Irregular triangle read by rows where row 1 is {1} and row n is the sequence starting with n and repeatedly applying A181819 until a prime number is reached.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 6, 4, 3, 7, 8, 5, 9, 3, 10, 4, 3, 11, 12, 6, 4, 3, 13, 14, 4, 3, 15, 4, 3, 16, 7, 17, 18, 6, 4, 3, 19, 20, 6, 4, 3, 21, 4, 3, 22, 4, 3, 23, 24, 10, 4, 3, 25, 3, 26, 4, 3, 27, 5, 28, 6, 4, 3, 29, 30, 8, 5, 31, 32, 11, 33, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The function A181819 maps p^i*...*q^j to prime(i)*...*prime(j) where p through q are distinct primes.

Examples

			Triangle begins:
   1            26 4 3        51 4 3          76 6 4 3
   2            27 5          52 6 4 3        77 4 3
   3            28 6 4 3      53              78 8 5
   4 3          29            54 10 4 3       79
   5            30 8 5        55 4 3          80 14 4 3
   6 4 3        31            56 10 4 3       81 7
   7            32 11         57 4 3          82 4 3
   8 5          33 4 3        58 4 3          83
   9 3          34 4 3        59              84 12 6 4 3
  10 4 3        35 4 3        60 12 6 4 3     85 4 3
  11            36 9 3        61              86 4 3
  12 6 4 3      37            62 4 3          87 4 3
  13            38 4 3        63 6 4 3        88 10 4 3
  14 4 3        39 4 3        64 13           89
  15 4 3        40 10 4 3     65 4 3          90 12 6 4 3
  16 7          41            66 8 5          91 4 3
  17            42 8 5        67              92 6 4 3
  18 6 4 3      43            68 6 4 3        93 4 3
  19            44 6 4 3      69 4 3          94 4 3
  20 6 4 3      45 6 4 3      70 8 5          95 4 3
  21 4 3        46 4 3        71              96 22 4 3
  22 4 3        47            72 15 4 3       97
  23            48 14 4 3     73              98 6 4 3
  24 10 4 3     49 3          74 4 3          99 6 4 3
  25 3          50 6 4 3      75 6 4 3       100 9 3
		

Crossrefs

Row lengths are 1 for n = 1 and A323014(n) for n > 1.

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    Table[NestWhileList[red,n,#>1&&!PrimeQ[#]&],{n,30}]

Formula

T(n,k) = A325239(n,k) for k <= A323014(n).
A001222(T(n,k)) = A323023(n,k) for n > 1.