cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325280 Triangle read by rows where T(n,k) is the number of integer partitions of n with adjusted frequency depth k.

This page as a plain text file.
%I A325280 #11 Jan 19 2023 22:35:12
%S A325280 1,0,1,0,1,1,0,1,1,1,0,1,2,1,1,0,1,1,2,3,0,0,1,3,4,3,0,0,0,1,1,4,8,1,
%T A325280 0,0,0,1,3,6,9,3,0,0,0,0,1,2,8,12,7,0,0,0,0,0,1,3,11,17,10,0,0,0,0,0,
%U A325280 0,1,1,11,26,17,0,0,0,0,0,0,0,1,5,19,25,27
%N A325280 Triangle read by rows where T(n,k) is the number of integer partitions of n with adjusted frequency depth k.
%C A325280 The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
%C A325280 The term "frequency depth" appears to have been coined by Clark Kimberling in A225485 and A225486, and can be applied to both integers (A323014) and integer partitions (this sequence).
%H A325280 Andrew Howroyd, <a href="/A325280/b325280.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%e A325280 Triangle begins:
%e A325280   1
%e A325280   0  1
%e A325280   0  1  1
%e A325280   0  1  1  1
%e A325280   0  1  2  1  1
%e A325280   0  1  1  2  3  0
%e A325280   0  1  3  4  3  0  0
%e A325280   0  1  1  4  8  1  0  0
%e A325280   0  1  3  6  9  3  0  0  0
%e A325280   0  1  2  8 12  7  0  0  0  0
%e A325280   0  1  3 11 17 10  0  0  0  0  0
%e A325280   0  1  1 11 26 17  0  0  0  0  0  0
%e A325280   0  1  5 19 25 27  0  0  0  0  0  0  0
%e A325280   0  1  1 17 44 38  0  0  0  0  0  0  0  0
%e A325280   0  1  3 25 53 52  1  0  0  0  0  0  0  0  0
%e A325280   0  1  3 29 63 76  4  0  0  0  0  0  0  0  0  0
%e A325280   0  1  4 37 83 98  8  0  0  0  0  0  0  0  0  0  0
%e A325280 Row n = 9 counts the following partitions:
%e A325280   (9)  (333)        (54)      (441)       (3321)
%e A325280        (111111111)  (63)      (522)       (4221)
%e A325280                     (72)      (711)       (4311)
%e A325280                     (81)      (3222)      (5211)
%e A325280                     (432)     (6111)      (32211)
%e A325280                     (531)     (22221)     (42111)
%e A325280                     (621)     (33111)     (321111)
%e A325280                     (222111)  (51111)
%e A325280                               (411111)
%e A325280                               (2211111)
%e A325280                               (3111111)
%e A325280                               (21111111)
%t A325280 fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
%t A325280 Table[Length[Select[IntegerPartitions[n],fdadj[#]==k&]],{n,0,16},{k,0,n}]
%o A325280 (PARI) \\ depth(p) gives adjusted frequency depth of partition.
%o A325280 depth(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L; r++); r)}
%o A325280 row(n)={my(v=vector(1+n)); forpart(p=n, v[1+depth(Vec(p))]++); v}
%o A325280 { for(n=0, 10, print(row(n))) } \\ _Andrew Howroyd_, Jan 18 2023
%Y A325280 Row sums are A000041. Column k = 2 is A032741. Column k = 3 is A325245.
%Y A325280 Cf. A181819, A225486, A323014, A323023, A325254, A325258, A325277.
%Y A325280 Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or this sequence (length/frequency depth).
%K A325280 nonn,tabl
%O A325280 0,13
%A A325280 _Gus Wiseman_, Apr 18 2019