This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325284 #7 Apr 19 2019 18:36:21 %S A325284 3,9,10,15,20,27,40,42,45,50,70,75,80,81,84,100,105,126,135,140,160, %T A325284 168,200,225,243,250,252,280,294,315,320,330,336,350,375,378,400,405, %U A325284 462,490,500,504,525,560,588,640,660,672,675,700,729,735,756,770,800 %N A325284 Numbers whose prime indices form an initial interval with a single hole: (1, 2, ..., x, x + 2, ..., m - 1, m), where x can be 0 but must be less than m - 1. %C A325284 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A325284 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose distinct parts form an initial interval with a single hole. The enumeration of these partitions by sum is given by A090858. %e A325284 The sequence of terms together with their prime indices begins: %e A325284 3: {2} %e A325284 9: {2,2} %e A325284 10: {1,3} %e A325284 15: {2,3} %e A325284 20: {1,1,3} %e A325284 27: {2,2,2} %e A325284 40: {1,1,1,3} %e A325284 42: {1,2,4} %e A325284 45: {2,2,3} %e A325284 50: {1,3,3} %e A325284 70: {1,3,4} %e A325284 75: {2,3,3} %e A325284 80: {1,1,1,1,3} %e A325284 81: {2,2,2,2} %e A325284 84: {1,1,2,4} %e A325284 100: {1,1,3,3} %e A325284 105: {2,3,4} %e A325284 126: {1,2,2,4} %e A325284 135: {2,2,2,3} %e A325284 140: {1,1,3,4} %t A325284 Select[Range[100],Length[Complement[Range[PrimePi[FactorInteger[#][[-1,1]]]],PrimePi/@First/@FactorInteger[#]]]==1&] %Y A325284 Cf. A055932, A056239, A061395, A090858, A112798, A124010, A127002, A130091, A325241, A325251, A325259, A325270. %K A325284 nonn %O A325284 1,1 %A A325284 _Gus Wiseman_, Apr 19 2019