cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325307 a(n) = k / (sum of prime factors of k, counted with multiplicity) where k is the n-th number for which the ratio is an integer.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 5, 1, 6, 1, 1, 1, 6, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 11, 1, 1, 15, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 11, 18, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 20, 1, 1, 25
Offset: 1

Views

Author

Sven Kunze, Apr 20 2019

Keywords

Examples

			a(8) = 2 comes from k = A036844(8) = 16 = 2^4. The sum of prime factors is 2 + 2 + 2 + 2 = 8, so k/(sum of prime factors of k) = 2.
		

Crossrefs

Cf. A001414 (sum of prime factors), A036844 (values of k).

Programs

  • Maple
    Res:= NULL: count:= 0:
    for n from 2 while count < 200 do
      F:= ifactors(n)[2];
      r:= n /add(t[1]*t[2],t=F);
      if r::integer then count:= count+1; Res:= Res, r fi
    od:
    Res; # Robert Israel, Jul 29 2019
  • Mathematica
    Select[Array[#/Total@ Flatten[ConstantArray[#1, #2] & @@ # & /@ FactorInteger[#]] &, 450, 2], IntegerQ] (* Michael De Vlieger, Apr 21 2019 *)
  • Python
    maxNum = 455
    ratios = []
    for i in range(2, maxNum):
      sumFactors = A001414(i)
      if i % sumFactors == 0:
        ratio = i // sumFactors
        ratios.append(ratio)
    print(ratios) # ratios is an array that contains the sequence