A325307 a(n) = k / (sum of prime factors of k, counted with multiplicity) where k is the n-th number for which the ratio is an integer.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 5, 1, 6, 1, 1, 1, 6, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 11, 1, 1, 15, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 11, 18, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 20, 1, 1, 25
Offset: 1
Keywords
Examples
a(8) = 2 comes from k = A036844(8) = 16 = 2^4. The sum of prime factors is 2 + 2 + 2 + 2 = 8, so k/(sum of prime factors of k) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
Res:= NULL: count:= 0: for n from 2 while count < 200 do F:= ifactors(n)[2]; r:= n /add(t[1]*t[2],t=F); if r::integer then count:= count+1; Res:= Res, r fi od: Res; # Robert Israel, Jul 29 2019
-
Mathematica
Select[Array[#/Total@ Flatten[ConstantArray[#1, #2] & @@ # & /@ FactorInteger[#]] &, 450, 2], IntegerQ] (* Michael De Vlieger, Apr 21 2019 *)
-
Python
maxNum = 455 ratios = [] for i in range(2, maxNum): sumFactors = A001414(i) if i % sumFactors == 0: ratio = i // sumFactors ratios.append(ratio) print(ratios) # ratios is an array that contains the sequence