This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325308 #21 Jul 14 2025 15:20:54 %S A325308 1,1,3,10,47,246,1602,11271,93767,847846,8618738,94966191,1149277802, %T A325308 14946737339,210112991441,3152429219400,50538450211103, %U A325308 859238687076542,15481605986593038,294161321911723167,5886118362589143742,123610854463260840735,2720101086040978435931 %N A325308 Sum of all distinct multinomial coefficients M(n;lambda), where lambda ranges over the partitions of n. %C A325308 Differs from A005651 first at n = 7: a(n) = 11271 < 11481 = A005651(7). %H A325308 Alois P. Heinz, <a href="/A325308/b325308.txt">Table of n, a(n) for n = 0..90</a> %H A325308 Milton Abramowitz and Irene A. Stegun, <a href="https://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables</a>, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10. %H A325308 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a>. %H A325308 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>. %p A325308 g:= proc(n, i) option remember; `if`(n=0 or i=1, {n!}, {map(x-> %p A325308 binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]}) %p A325308 end: %p A325308 a:= n-> add(i, i=g(n$2)): %p A325308 seq(a(n), n=0..23); %t A325308 g[n_, i_] := g[n, i] = If[n == 0 || i == 1, {n!}, Union[Map[Function[x, Binomial[n, i] x], g[n - i, Min[n - i, i]]], g[n, i - 1]]]; %t A325308 a[n_] := Total[g[n, n]]; %t A325308 a /@ Range[0, 23] (* _Jean-François Alcover_, May 06 2020, after Maple *) %Y A325308 Column k=1 of A325305. %Y A325308 Cf. A005651. %K A325308 nonn %O A325308 0,3 %A A325308 _Alois P. Heinz_, Sep 05 2019