A325325 Number of integer partitions of n with distinct differences between successive parts.
1, 1, 2, 2, 4, 5, 5, 8, 11, 12, 16, 22, 21, 30, 34, 42, 49, 64, 67, 87, 95, 117, 132, 160, 169, 207, 230, 274, 301, 360, 395, 463, 506, 602, 656, 762, 834, 960, 1042, 1220, 1311, 1505, 1643, 1859, 2000, 2341, 2491, 2827, 3083, 3464, 3747, 4302, 4561, 5154
Offset: 0
Keywords
Examples
The a(0) = 1 through a(9) = 12 partitions: () (1) (2) (3) (4) (5) (6) (7) (8) (9) (11) (21) (22) (32) (33) (43) (44) (54) (31) (41) (42) (52) (53) (63) (211) (221) (51) (61) (62) (72) (311) (411) (322) (71) (81) (331) (332) (441) (421) (422) (522) (511) (431) (621) (521) (711) (611) (4221) (4211) (4311) (5211) For example, (5,2,1,1) has differences (-3,-1,0), which are distinct, so (5,2,1,1) is counted under a(9).
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..400 (terms 0..123 from Alois P. Heinz)
- Gus Wiseman, Sequences counting and ranking integer partitions by the differences of their successive parts.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Differences[#]&]],{n,0,30}]
Comments