A325326 Heinz numbers of integer partitions covering an initial interval of positive integers with distinct multiplicities.
1, 2, 4, 8, 12, 16, 18, 24, 32, 48, 54, 64, 72, 96, 108, 128, 144, 162, 192, 256, 288, 324, 360, 384, 432, 486, 512, 540, 576, 600, 648, 720, 768, 864, 972, 1024, 1152, 1200, 1350, 1440, 1458, 1500, 1536, 1620, 1728, 1944, 2048, 2160, 2250, 2304, 2400, 2592
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 4: {1,1} 8: {1,1,1} 12: {1,1,2} 16: {1,1,1,1} 18: {1,2,2} 24: {1,1,1,2} 32: {1,1,1,1,1} 48: {1,1,1,1,2} 54: {1,2,2,2} 64: {1,1,1,1,1,1} 72: {1,1,1,2,2} 96: {1,1,1,1,1,2} 108: {1,1,2,2,2} 128: {1,1,1,1,1,1,1} 144: {1,1,1,1,2,2} 162: {1,2,2,2,2} 192: {1,1,1,1,1,1,2} 256: {1,1,1,1,1,1,1,1} 288: {1,1,1,1,1,2,2} 324: {1,1,2,2,2,2} 360: {1,1,1,2,2,3} 384: {1,1,1,1,1,1,1,2}
Crossrefs
Programs
-
Mathematica
normQ[n_Integer]:=n==1||PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]; Select[Range[100],normQ[#]&&UnsameQ@@Last/@FactorInteger[#]&]
Comments