This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325327 #14 May 25 2019 05:44:48 %S A325327 1,2,3,5,6,7,11,13,17,19,21,23,29,30,31,37,41,43,47,53,59,61,65,67,71, %T A325327 73,79,83,89,97,101,103,107,109,113,127,131,133,137,139,149,151,157, %U A325327 163,167,173,179,181,191,193,197,199,210,211,223,227,229,233,239 %N A325327 Heinz numbers of multiples of triangular partitions, or finite arithmetic progressions with offset 0. %C A325327 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325327 Also numbers of the form Product_{k = 1..b} prime(k * c) for some b >= 0 and c > 0. %C A325327 The enumeration of these partitions by sum is given by A007862. %H A325327 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>. %e A325327 The sequence of terms together with their prime indices begins: %e A325327 1: {} %e A325327 2: {1} %e A325327 3: {2} %e A325327 5: {3} %e A325327 6: {1,2} %e A325327 7: {4} %e A325327 11: {5} %e A325327 13: {6} %e A325327 17: {7} %e A325327 19: {8} %e A325327 21: {2,4} %e A325327 23: {9} %e A325327 29: {10} %e A325327 30: {1,2,3} %e A325327 31: {11} %e A325327 37: {12} %e A325327 41: {13} %e A325327 43: {14} %e A325327 47: {15} %e A325327 53: {16} %t A325327 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325327 Select[Range[100],SameQ@@Differences[Append[primeptn[#],0]]&] %Y A325327 Cf. A000961, A007294, A007862, A049988, A056239, A112798, A130091, A289509, A307824, A325328, A325367, A325390, A325407. %K A325327 nonn %O A325327 1,2 %A A325327 _Gus Wiseman_, Apr 23 2019