cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325327 Heinz numbers of multiples of triangular partitions, or finite arithmetic progressions with offset 0.

This page as a plain text file.
%I A325327 #14 May 25 2019 05:44:48
%S A325327 1,2,3,5,6,7,11,13,17,19,21,23,29,30,31,37,41,43,47,53,59,61,65,67,71,
%T A325327 73,79,83,89,97,101,103,107,109,113,127,131,133,137,139,149,151,157,
%U A325327 163,167,173,179,181,191,193,197,199,210,211,223,227,229,233,239
%N A325327 Heinz numbers of multiples of triangular partitions, or finite arithmetic progressions with offset 0.
%C A325327 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325327 Also numbers of the form Product_{k = 1..b} prime(k * c) for some b >= 0 and c > 0.
%C A325327 The enumeration of these partitions by sum is given by A007862.
%H A325327 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>.
%e A325327 The sequence of terms together with their prime indices begins:
%e A325327     1: {}
%e A325327     2: {1}
%e A325327     3: {2}
%e A325327     5: {3}
%e A325327     6: {1,2}
%e A325327     7: {4}
%e A325327    11: {5}
%e A325327    13: {6}
%e A325327    17: {7}
%e A325327    19: {8}
%e A325327    21: {2,4}
%e A325327    23: {9}
%e A325327    29: {10}
%e A325327    30: {1,2,3}
%e A325327    31: {11}
%e A325327    37: {12}
%e A325327    41: {13}
%e A325327    43: {14}
%e A325327    47: {15}
%e A325327    53: {16}
%t A325327 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325327 Select[Range[100],SameQ@@Differences[Append[primeptn[#],0]]&]
%Y A325327 Cf. A000961, A007294, A007862, A049988, A056239, A112798, A130091, A289509, A307824, A325328, A325367, A325390, A325407.
%K A325327 nonn
%O A325327 1,2
%A A325327 _Gus Wiseman_, Apr 23 2019