cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325328 Heinz numbers of finite arithmetic progressions (integer partitions with equal differences).

This page as a plain text file.
%I A325328 #12 May 31 2019 05:33:26
%S A325328 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,29,30,31,
%T A325328 32,33,34,35,37,38,39,41,43,46,47,49,51,53,55,57,58,59,61,62,64,65,67,
%U A325328 69,71,73,74,77,79,81,82,83,85,86,87,89,91,93,94,95,97
%N A325328 Heinz numbers of finite arithmetic progressions (integer partitions with equal differences).
%C A325328 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325328 The enumeration of these partitions by sum is given by A049988.
%H A325328 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression.</a>
%H A325328 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A325328 Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
%e A325328    12: {1,1,2}
%e A325328    18: {1,2,2}
%e A325328    20: {1,1,3}
%e A325328    24: {1,1,1,2}
%e A325328    28: {1,1,4}
%e A325328    36: {1,1,2,2}
%e A325328    40: {1,1,1,3}
%e A325328    42: {1,2,4}
%e A325328    44: {1,1,5}
%e A325328    45: {2,2,3}
%e A325328    48: {1,1,1,1,2}
%e A325328    50: {1,3,3}
%e A325328    52: {1,1,6}
%e A325328    54: {1,2,2,2}
%e A325328    56: {1,1,1,4}
%e A325328    60: {1,1,2,3}
%e A325328    63: {2,2,4}
%e A325328    66: {1,2,5}
%e A325328    68: {1,1,7}
%e A325328    70: {1,3,4}
%e A325328 For example, 60 is the Heinz number of (3,2,1,1), which has differences (-1,-1,0), which are not equal, so 60 does not belong to the sequence.
%t A325328 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325328 Select[Range[100],SameQ@@Differences[primeptn[#]]&]
%Y A325328 Cf. A000961, A007862, A049988, A056239, A112798, A130091, A240026, A289509, A307824, A325327, A325352, A325368, A325405, A325407.
%K A325328 nonn
%O A325328 1,2
%A A325328 _Gus Wiseman_, Apr 23 2019