This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325328 #12 May 31 2019 05:33:26 %S A325328 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,29,30,31, %T A325328 32,33,34,35,37,38,39,41,43,46,47,49,51,53,55,57,58,59,61,62,64,65,67, %U A325328 69,71,73,74,77,79,81,82,83,85,86,87,89,91,93,94,95,97 %N A325328 Heinz numbers of finite arithmetic progressions (integer partitions with equal differences). %C A325328 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325328 The enumeration of these partitions by sum is given by A049988. %H A325328 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression.</a> %H A325328 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325328 Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins: %e A325328 12: {1,1,2} %e A325328 18: {1,2,2} %e A325328 20: {1,1,3} %e A325328 24: {1,1,1,2} %e A325328 28: {1,1,4} %e A325328 36: {1,1,2,2} %e A325328 40: {1,1,1,3} %e A325328 42: {1,2,4} %e A325328 44: {1,1,5} %e A325328 45: {2,2,3} %e A325328 48: {1,1,1,1,2} %e A325328 50: {1,3,3} %e A325328 52: {1,1,6} %e A325328 54: {1,2,2,2} %e A325328 56: {1,1,1,4} %e A325328 60: {1,1,2,3} %e A325328 63: {2,2,4} %e A325328 66: {1,2,5} %e A325328 68: {1,1,7} %e A325328 70: {1,3,4} %e A325328 For example, 60 is the Heinz number of (3,2,1,1), which has differences (-1,-1,0), which are not equal, so 60 does not belong to the sequence. %t A325328 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325328 Select[Range[100],SameQ@@Differences[primeptn[#]]&] %Y A325328 Cf. A000961, A007862, A049988, A056239, A112798, A130091, A240026, A289509, A307824, A325327, A325352, A325368, A325405, A325407. %K A325328 nonn %O A325328 1,2 %A A325328 _Gus Wiseman_, Apr 23 2019