cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325332 Number of totally abnormal integer partitions of n.

This page as a plain text file.
%I A325332 #6 May 02 2019 08:53:18
%S A325332 0,0,1,1,2,1,3,1,4,2,5,1,8,1,7,5,10,2,16,4,21,15,24,17,49,29,53,53,84,
%T A325332 65,121,92,148,141,186,179,280,223,317,318,428,387,576,512,700,734,
%U A325332 899,900,1260,1207,1551,1668,2041,2109,2748,2795,3463,3775,4446
%N A325332 Number of totally abnormal integer partitions of n.
%C A325332 A multiset is normal if its union is an initial interval of positive integers. A multiset is totally abnormal if it is not normal and either it is a singleton or its multiplicities form a totally abnormal multiset.
%C A325332 The Heinz numbers of these partitions are given by A325372.
%e A325332 The a(2) = 1 through a(12) = 8 totally abnormal partitions (A = 10, B = 11, C = 12):
%e A325332   (2)  (3)  (4)   (5)  (6)    (7)  (8)     (9)    (A)      (B)   (C)
%e A325332             (22)       (33)        (44)    (333)  (55)           (66)
%e A325332                        (222)       (2222)         (3322)         (444)
%e A325332                                    (3311)         (4411)         (3333)
%e A325332                                                   (22222)        (4422)
%e A325332                                                                  (5511)
%e A325332                                                                  (222222)
%e A325332                                                                  (333111)
%t A325332 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
%t A325332 antinrmQ[ptn_]:=!normQ[ptn]&&(Length[ptn]==1||antinrmQ[Sort[Length/@Split[ptn]]]);
%t A325332 Table[Length[Select[IntegerPartitions[n],antinrmQ]],{n,0,30}]
%Y A325332 Cf. A181819, A275870, A305563, A317088, A317245, A317491, A317589, A319149, A319810, A325372.
%K A325332 nonn
%O A325332 0,5
%A A325332 _Gus Wiseman_, May 01 2019