This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325332 #6 May 02 2019 08:53:18 %S A325332 0,0,1,1,2,1,3,1,4,2,5,1,8,1,7,5,10,2,16,4,21,15,24,17,49,29,53,53,84, %T A325332 65,121,92,148,141,186,179,280,223,317,318,428,387,576,512,700,734, %U A325332 899,900,1260,1207,1551,1668,2041,2109,2748,2795,3463,3775,4446 %N A325332 Number of totally abnormal integer partitions of n. %C A325332 A multiset is normal if its union is an initial interval of positive integers. A multiset is totally abnormal if it is not normal and either it is a singleton or its multiplicities form a totally abnormal multiset. %C A325332 The Heinz numbers of these partitions are given by A325372. %e A325332 The a(2) = 1 through a(12) = 8 totally abnormal partitions (A = 10, B = 11, C = 12): %e A325332 (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C) %e A325332 (22) (33) (44) (333) (55) (66) %e A325332 (222) (2222) (3322) (444) %e A325332 (3311) (4411) (3333) %e A325332 (22222) (4422) %e A325332 (5511) %e A325332 (222222) %e A325332 (333111) %t A325332 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; %t A325332 antinrmQ[ptn_]:=!normQ[ptn]&&(Length[ptn]==1||antinrmQ[Sort[Length/@Split[ptn]]]); %t A325332 Table[Length[Select[IntegerPartitions[n],antinrmQ]],{n,0,30}] %Y A325332 Cf. A181819, A275870, A305563, A317088, A317245, A317491, A317589, A319149, A319810, A325372. %K A325332 nonn %O A325332 0,5 %A A325332 _Gus Wiseman_, May 01 2019