This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325334 #13 Jan 17 2025 19:23:22 %S A325334 0,0,0,1,0,0,2,0,0,1,1,0,2,0,0,2,0,0,2,0,1,2,0,0,2,0,0,1,1,0,4,0,0,1, %T A325334 0,0,3,0,0,1,1,0,3,0,0,3,0,0,2,0,1,1,0,0,2,1,1,1,0,0,4,0,0,2,0,0,3,0, %U A325334 0,1,1,0,3,0,0,2,0,0,3,0,1,1,0,0,4,0,0,1,0,0,5,1,0,1,0,0,2,0,0,1,1,0,2,0,0,4 %N A325334 Number of integer partitions of n with adjusted frequency depth 3 whose parts cover an initial interval of positive integers. %C A325334 The adjusted frequency depth of an integer partition (A325280) is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). %C A325334 The Heinz numbers of these partitions are given by A325374. %H A325334 Antti Karttunen, <a href="/A325334/b325334.txt">Table of n, a(n) for n = 0..100000</a> %F A325334 a(n) = A007862(n) - 1. %e A325334 The first 30 terms count the following partitions: %e A325334 3: (21) %e A325334 6: (321) %e A325334 6: (2211) %e A325334 9: (222111) %e A325334 10: (4321) %e A325334 12: (332211) %e A325334 12: (22221111) %e A325334 15: (54321) %e A325334 15: (2222211111) %e A325334 18: (333222111) %e A325334 18: (222222111111) %e A325334 20: (44332211) %e A325334 21: (654321) %e A325334 21: (22222221111111) %e A325334 24: (333322221111) %e A325334 24: (2222222211111111) %e A325334 27: (222222222111111111) %e A325334 28: (7654321) %e A325334 30: (5544332211) %e A325334 30: (444333222111) %e A325334 30: (333332222211111) %e A325334 30: (22222222221111111111) %t A325334 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; %t A325334 unifQ[m_]:=SameQ@@Length/@Split[m]; %t A325334 Table[Length[Select[IntegerPartitions[n],normQ[#]&&!SameQ@@#&&unifQ[#]&]],{n,0,30}] %o A325334 (PARI) %o A325334 A007862(n) = sumdiv(n, d, ispolygonal(d, 3)); %o A325334 A325334(n) = if(!n,n,A007862(n)-1); \\ _Antti Karttunen_, Jan 17 2025 %Y A325334 Column k = 3 of A325336. %Y A325334 Cf. A007862, A181819, A182850, A320348, A323014, A325245, A325280, A325326, A325335, A325374. %K A325334 nonn %O A325334 0,7 %A A325334 _Gus Wiseman_, May 01 2019 %E A325334 Data section extended to a(105) by _Antti Karttunen_, Jan 17 2025