cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325337 Numbers whose prime exponents are distinct and cover an initial interval of positive integers.

This page as a plain text file.
%I A325337 #5 May 02 2019 08:54:02
%S A325337 1,2,3,5,7,11,12,13,17,18,19,20,23,28,29,31,37,41,43,44,45,47,50,52,
%T A325337 53,59,61,63,67,68,71,73,75,76,79,83,89,92,97,98,99,101,103,107,109,
%U A325337 113,116,117,124,127,131,137,139,147,148,149,151,153,157,163,164
%N A325337 Numbers whose prime exponents are distinct and cover an initial interval of positive integers.
%C A325337 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with distinct multiplicities covering an initial interval of positive integers. The enumeration of these partitions by sum is given by A320348.
%e A325337 The sequence of terms together with their prime indices begins:
%e A325337    1: {}
%e A325337    2: {1}
%e A325337    3: {2}
%e A325337    5: {3}
%e A325337    7: {4}
%e A325337   11: {5}
%e A325337   12: {1,1,2}
%e A325337   13: {6}
%e A325337   17: {7}
%e A325337   18: {1,2,2}
%e A325337   19: {8}
%e A325337   20: {1,1,3}
%e A325337   23: {9}
%e A325337   28: {1,1,4}
%e A325337   29: {10}
%e A325337   31: {11}
%e A325337   37: {12}
%e A325337   41: {13}
%e A325337   43: {14}
%e A325337   44: {1,1,5}
%t A325337 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
%t A325337 Select[Range[100],UnsameQ@@Last/@FactorInteger[#]&&normQ[Last/@FactorInteger[#]]&]
%Y A325337 Cf. A055932, A056239, A112798, A317081, A317089, A317090, A325326, A325330, A325370, A325371.
%K A325337 nonn
%O A325337 1,2
%A A325337 _Gus Wiseman_, May 01 2019