This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325337 #5 May 02 2019 08:54:02 %S A325337 1,2,3,5,7,11,12,13,17,18,19,20,23,28,29,31,37,41,43,44,45,47,50,52, %T A325337 53,59,61,63,67,68,71,73,75,76,79,83,89,92,97,98,99,101,103,107,109, %U A325337 113,116,117,124,127,131,137,139,147,148,149,151,153,157,163,164 %N A325337 Numbers whose prime exponents are distinct and cover an initial interval of positive integers. %C A325337 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with distinct multiplicities covering an initial interval of positive integers. The enumeration of these partitions by sum is given by A320348. %e A325337 The sequence of terms together with their prime indices begins: %e A325337 1: {} %e A325337 2: {1} %e A325337 3: {2} %e A325337 5: {3} %e A325337 7: {4} %e A325337 11: {5} %e A325337 12: {1,1,2} %e A325337 13: {6} %e A325337 17: {7} %e A325337 18: {1,2,2} %e A325337 19: {8} %e A325337 20: {1,1,3} %e A325337 23: {9} %e A325337 28: {1,1,4} %e A325337 29: {10} %e A325337 31: {11} %e A325337 37: {12} %e A325337 41: {13} %e A325337 43: {14} %e A325337 44: {1,1,5} %t A325337 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; %t A325337 Select[Range[100],UnsameQ@@Last/@FactorInteger[#]&&normQ[Last/@FactorInteger[#]]&] %Y A325337 Cf. A055932, A056239, A112798, A317081, A317089, A317090, A325326, A325330, A325370, A325371. %K A325337 nonn %O A325337 1,2 %A A325337 _Gus Wiseman_, May 01 2019