cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325351 Heinz number of the augmented differences of the integer partition with Heinz number n.

This page as a plain text file.
%I A325351 #15 Nov 16 2019 20:05:20
%S A325351 1,2,3,4,5,6,7,8,6,10,11,12,13,14,9,16,17,12,19,20,15,22,23,24,10,26,
%T A325351 12,28,29,18,31,32,21,34,15,24,37,38,33,40,41,30,43,44,18,46,47,48,14,
%U A325351 20,39,52,53,24,25,56,51,58,59,36,61,62,30,64,35,42,67,68,57,30,71,48,73,74,18,76,21,66,79,80,24,82,83,60,55,86,69,88,89,36,35
%N A325351 Heinz number of the augmented differences of the integer partition with Heinz number n.
%C A325351 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325351 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). Note that aug preserves length so this sequence preserves omega (number of prime factors counted with multiplicity).
%H A325351 Antti Karttunen, <a href="/A325351/b325351.txt">Table of n, a(n) for n = 1..16384</a>
%H A325351 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A325351 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%e A325351 The partition (3,2,2,1) with Heinz number 90 has augmented differences (2,1,2,1) with Heinz number 36, so a(90) = 36.
%t A325351 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325351 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}];
%t A325351 Table[Times@@Prime/@aug[primeptn[n]],{n,100}]
%o A325351 (PARI)
%o A325351 augdiffs(n) = { my(diffs=List([]), f=factor(n), prevpi, pi=0, i=#f~); while(i, prevpi=pi; pi = primepi(f[i, 1]); if(prevpi, listput(diffs, 1+(prevpi-pi))); if(f[i, 2]>1, f[i, 2]--, i--)); if(pi, listput(diffs,pi)); Vec(diffs); };
%o A325351 A325351(n) = factorback(apply(prime,augdiffs(n))); \\ _Antti Karttunen_, Nov 16 2019
%Y A325351 Number of appearances of n is A008480(n).
%Y A325351 Cf. A056239, A093641 (fixed points), A112798, A325350, A325352, A325355, A325366, A325389, A325394, A325395, A325396.
%K A325351 nonn,look
%O A325351 1,2
%A A325351 _Gus Wiseman_, Apr 23 2019
%E A325351 More terms from _Antti Karttunen_, Nov 16 2019