cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325353 Number of integer partitions of n whose k-th differences are weakly decreasing for all k >= 0.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 7, 9, 11, 12, 13, 17, 16, 19, 23, 23, 24, 30, 29, 35, 37, 37, 40, 49, 47, 51, 56, 59, 61, 73, 65, 75, 80, 84, 91, 99, 91, 103, 112, 120, 114, 132, 126, 143, 154, 147, 152, 175, 169, 190, 187, 194, 198, 226, 225, 231, 236, 246, 256, 293
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325397.

Examples

			The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (321)     (2221)     (332)
                                     (111111)  (1111111)  (431)
                                                          (2222)
                                                          (11111111)
The first partition that has weakly decreasing differences (A320466) but is not counted under a(9) is (3,3,2,1), whose first and second differences are (0,-1,-1) and (-1,0) respectively.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[GreaterEqual@@Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]