cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325354 Number of reversed integer partitions of n whose k-th differences are weakly increasing for all k.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 11, 15, 19, 24, 25, 36, 37, 43, 54, 63, 64, 80, 81, 100, 113, 122, 123, 151, 166, 178, 195, 217, 218, 269, 270, 295, 316, 332, 372, 424, 425, 447, 472, 547, 550, 616, 617, 659, 750, 777, 782, 862, 885, 995, 1032, 1083, 1090, 1176, 1275
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325400.

Examples

			The a(1) = 1 through a(8) = 15 reversed partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (111)  (22)    (23)     (24)      (25)       (26)
                    (112)   (113)    (33)      (34)       (35)
                    (1111)  (1112)   (114)     (115)      (44)
                            (11111)  (123)     (124)      (116)
                                     (222)     (223)      (125)
                                     (1113)    (1114)     (224)
                                     (11112)   (11113)    (1115)
                                     (111111)  (111112)   (1124)
                                               (1111111)  (2222)
                                                          (11114)
                                                          (111113)
                                                          (1111112)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Sort/@IntegerPartitions[n],And@@Table[OrderedQ[Differences[#,k]],{k,0,Length[#]}]&]],{n,0,30}]