cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325355 One plus the number of steps applying A325351 (Heinz number of augmented differences of reversed prime indices) to reach a fixed point.

This page as a plain text file.
%I A325355 #13 Nov 16 2019 20:05:26
%S A325355 1,1,1,1,1,1,1,1,2,1,1,1,1,1,3,1,1,2,1,1,4,1,1,1,2,1,2,1,1,3,1,1,5,1,
%T A325355 4,2,1,1,6,1,1,4,1,1,3,1,1,1,2,2,7,1,1,2,3,1,8,1,1,3,1,1,4,1,5,5,1,1,
%U A325355 9,4,1,2,1,1,3,1,5,6,1,1,2,1,1,4,4,1,10,1,1,3,5,1,11,1,6,1,1,2,5,2,1,7,1,1,3
%N A325355 One plus the number of steps applying A325351 (Heinz number of augmented differences of reversed prime indices) to reach a fixed point.
%C A325355 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325355 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
%C A325355 The fixed points of A325351 are the Heinz numbers of hooks A093641.
%H A325355 Antti Karttunen, <a href="/A325355/b325355.txt">Table of n, a(n) for n = 1..65537</a>
%H A325355 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A325355 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%e A325355 Repeatedly applying A325351 starting with 78 gives 78 -> 66 -> 42 -> 30 -> 18 -> 12, and 12 is a fixed point, so a(78) = 6.
%t A325355 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325355 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}];
%t A325355 Table[Length[FixedPointList[Times@@Prime/@aug[primeptn[#]]&,n]]-1,{n,50}]
%o A325355 (PARI)
%o A325355 augdiffs(n) = { my(diffs=List([]), f=factor(n), prevpi, pi=0, i=#f~); while(i, prevpi=pi; pi = primepi(f[i, 1]); if(prevpi, listput(diffs, 1+(prevpi-pi))); if(f[i, 2]>1, f[i, 2]--, i--)); if(pi, listput(diffs,pi)); Vec(diffs); };
%o A325355 A325351(n) = factorback(apply(prime,augdiffs(n)));
%o A325355 A325355(n) = { my(u=A325351(n)); if(u==n,1,1+A325355(u)); }; \\ _Antti Karttunen_, Nov 16 2019
%Y A325355 Positions of 2's are A325359.
%Y A325355 Cf. A056239, A093641, A112798, A130091, A289509, A325351, A325352, A325366, A325389, A325394, A325395, A325396.
%K A325355 nonn
%O A325355 1,9
%A A325355 _Gus Wiseman_, Apr 23 2019
%E A325355 More terms from _Antti Karttunen_, Nov 16 2019