This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325357 #11 Mar 04 2021 03:18:49 %S A325357 1,1,1,1,2,1,2,2,2,2,3,3,3,3,4,3,5,5,4,5,6,5,7,7,7,7,9,7,10,10,8,11, %T A325357 13,10,13,14,12,14,17,13,17,19,17,18,22,19,22,24,21,24,28,24,29,30,28, %U A325357 31,35,30,35,40,36 %N A325357 Number of integer partitions of n whose augmented differences are strictly increasing. %C A325357 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). %C A325357 The Heinz numbers of these partitions are given by A325395. %H A325357 Fausto A. C. Cariboni, <a href="/A325357/b325357.txt">Table of n, a(n) for n = 0..2000</a> %e A325357 The a(28) = 10 partitions: %e A325357 (28) %e A325357 (18,10) %e A325357 (17,11) %e A325357 (16,12) %e A325357 (15,13) %e A325357 (14,14) %e A325357 (12,10,6) %e A325357 (11,10,7) %e A325357 (10,10,8) %e A325357 (8,8,7,5) %e A325357 For example, the augmented differences of (8,8,7,5) are (1,2,3,5), which are strictly increasing. %t A325357 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}]; %t A325357 Table[Length[Select[IntegerPartitions[n],Less@@aug[#]&]],{n,0,30}] %Y A325357 Cf. A000837, A007294, A049988, A098859, A325351, A325356, A325360, A325391, A325395. %K A325357 nonn %O A325357 0,5 %A A325357 _Gus Wiseman_, Apr 23 2019