This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325359 #12 Sep 30 2020 03:30:18 %S A325359 9,18,25,27,36,49,50,54,72,81,98,100,108,121,125,144,162,169,196,200, %T A325359 216,242,243,250,288,289,324,338,343,361,392,400,432,484,486,500,529, %U A325359 576,578,625,648,676,686,722,729,784,800,841,864,961,968,972,1000,1058 %N A325359 Numbers of the form p^y * 2^z where p is an odd prime, y >= 2, and z >= 0. %C A325359 Also Heinz numbers of integer partitions that are not hooks but whose augmented differences are hooks, where the Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k), and a hook is a partition of the form (n,1,1,...,1). The enumeration of these partitions by sum is given by A325459. %H A325359 Robert Israel, <a href="/A325359/b325359.txt">Table of n, a(n) for n = 1..10000</a> %F A325359 Sum_{n>=1} 1/a(n) = 2 * Sum_{p prime} 1/(p*(p-1)) - 1 = 2 * A136141 - 1 = 0.54631333809959025572... - _Amiram Eldar_, Sep 30 2020 %e A325359 The sequence of terms together with their prime indices begins: %e A325359 9: {2,2} %e A325359 18: {1,2,2} %e A325359 25: {3,3} %e A325359 27: {2,2,2} %e A325359 36: {1,1,2,2} %e A325359 49: {4,4} %e A325359 50: {1,3,3} %e A325359 54: {1,2,2,2} %e A325359 72: {1,1,1,2,2} %e A325359 81: {2,2,2,2} %e A325359 98: {1,4,4} %e A325359 100: {1,1,3,3} %e A325359 108: {1,1,2,2,2} %e A325359 121: {5,5} %e A325359 125: {3,3,3} %e A325359 144: {1,1,1,1,2,2} %e A325359 162: {1,2,2,2,2} %e A325359 169: {6,6} %e A325359 196: {1,1,4,4} %e A325359 200: {1,1,1,3,3} %p A325359 N:= 1000: # to get terms <= N %p A325359 P:= select(isprime, [seq(i,i=3..floor(sqrt(N)),2)]): %p A325359 B:= map(proc(p) local y; seq(p^y, y=2..floor(log[p](N))) end proc, P): %p A325359 sort(map(proc(t) local z; seq(2^z*t, z=0..ilog2(N/t)) end proc, B)); # _Robert Israel_, May 03 2019 %t A325359 Select[Range[1000],MatchQ[FactorInteger[2*#],{{2,_},{_?(#>2&),_?(#>1&)}}]&] %Y A325359 Positions of 2's in A325355. %Y A325359 Numbers n such that n does not belong to A093641 but A325351(n) does. %Y A325359 Cf. A056239, A112798, A136141, A325366, A325389, A325394, A325395, A325396. %K A325359 nonn %O A325359 1,1 %A A325359 _Gus Wiseman_, May 02 2019