This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325363 #5 May 02 2019 16:04:29 %S A325363 1,2,4,5,8,10,13,16,20,25,26,29,32,40,47,50,52,58,64,65,73,80,94,100, %T A325363 104,107,116,125,128,130,145,146,151,160,169,188,197,200,208,214,232, %U A325363 235,250,256,257,260,290,292,302,317,320,325,338,365,376,377,394,397 %N A325363 Heinz numbers of integer partitions into nonzero triangular numbers A000217. %C A325363 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325363 The enumeration of these partitions by sum is given by A007294. %e A325363 The sequence of terms together with their prime indices begins: %e A325363 1: {} %e A325363 2: {1} %e A325363 4: {1,1} %e A325363 5: {3} %e A325363 8: {1,1,1} %e A325363 10: {1,3} %e A325363 13: {6} %e A325363 16: {1,1,1,1} %e A325363 20: {1,1,3} %e A325363 25: {3,3} %e A325363 26: {1,6} %e A325363 29: {10} %e A325363 32: {1,1,1,1,1} %e A325363 40: {1,1,1,3} %e A325363 47: {15} %e A325363 50: {1,3,3} %e A325363 52: {1,1,6} %e A325363 58: {1,10} %e A325363 64: {1,1,1,1,1,1} %e A325363 65: {3,6} %t A325363 nn=1000; %t A325363 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325363 trgs=Table[n*(n+1)/2,{n,Sqrt[2*PrimePi[nn]]}]; %t A325363 Select[Range[nn],SubsetQ[trgs,primeMS[#]]&] %Y A325363 Cf. A000217, A007294, A056239, A112798, A240026, A325327, A325360, A325362, A325367, A325390, A325394, A325400. %K A325363 nonn %O A325363 1,2 %A A325363 _Gus Wiseman_, May 02 2019