cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325366 Heinz numbers of integer partitions whose augmented differences are distinct.

This page as a plain text file.
%I A325366 #7 Apr 07 2021 12:22:44
%S A325366 1,2,3,5,6,7,9,10,11,13,14,17,19,21,22,23,25,26,29,31,33,34,35,37,38,
%T A325366 39,41,42,43,46,47,49,51,53,57,58,59,61,62,63,65,66,67,69,70,71,73,74,
%U A325366 77,78,79,82,83,85,86,87,89,91,93,94,95,97,99,101,102,103
%N A325366 Heinz numbers of integer partitions whose augmented differences are distinct.
%C A325366 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325366 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
%C A325366 The enumeration of these partitions by sum is given by A325349.
%H A325366 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A325366 The sequence of terms together with their prime indices begins:
%e A325366     1: {}
%e A325366     2: {1}
%e A325366     3: {2}
%e A325366     5: {3}
%e A325366     6: {1,2}
%e A325366     7: {4}
%e A325366     9: {2,2}
%e A325366    10: {1,3}
%e A325366    11: {5}
%e A325366    13: {6}
%e A325366    14: {1,4}
%e A325366    17: {7}
%e A325366    19: {8}
%e A325366    21: {2,4}
%e A325366    22: {1,5}
%e A325366    23: {9}
%e A325366    25: {3,3}
%e A325366    26: {1,6}
%e A325366    29: {10}
%e A325366    31: {11}
%t A325366 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325366 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}];
%t A325366 Select[Range[100],UnsameQ@@aug[primeptn[#]]&]
%Y A325366 Positions of squarefree numbers in A325351.
%Y A325366 Cf. A056239, A093641, A112798, A130091, A325349, A325355, A325367, A325368, A325389, A325394, A325395, A325396, A325405.
%K A325366 nonn
%O A325366 1,2
%A A325366 _Gus Wiseman_, May 02 2019