This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325366 #7 Apr 07 2021 12:22:44 %S A325366 1,2,3,5,6,7,9,10,11,13,14,17,19,21,22,23,25,26,29,31,33,34,35,37,38, %T A325366 39,41,42,43,46,47,49,51,53,57,58,59,61,62,63,65,66,67,69,70,71,73,74, %U A325366 77,78,79,82,83,85,86,87,89,91,93,94,95,97,99,101,102,103 %N A325366 Heinz numbers of integer partitions whose augmented differences are distinct. %C A325366 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325366 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). %C A325366 The enumeration of these partitions by sum is given by A325349. %H A325366 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325366 The sequence of terms together with their prime indices begins: %e A325366 1: {} %e A325366 2: {1} %e A325366 3: {2} %e A325366 5: {3} %e A325366 6: {1,2} %e A325366 7: {4} %e A325366 9: {2,2} %e A325366 10: {1,3} %e A325366 11: {5} %e A325366 13: {6} %e A325366 14: {1,4} %e A325366 17: {7} %e A325366 19: {8} %e A325366 21: {2,4} %e A325366 22: {1,5} %e A325366 23: {9} %e A325366 25: {3,3} %e A325366 26: {1,6} %e A325366 29: {10} %e A325366 31: {11} %t A325366 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325366 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}]; %t A325366 Select[Range[100],UnsameQ@@aug[primeptn[#]]&] %Y A325366 Positions of squarefree numbers in A325351. %Y A325366 Cf. A056239, A093641, A112798, A130091, A325349, A325355, A325367, A325368, A325389, A325394, A325395, A325396, A325405. %K A325366 nonn %O A325366 1,2 %A A325366 _Gus Wiseman_, May 02 2019