This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325367 #6 May 02 2019 16:04:49 %S A325367 1,2,3,4,5,7,9,10,11,13,14,15,17,19,20,22,23,25,26,28,29,31,33,34,35, %T A325367 37,38,39,41,43,44,45,46,47,49,50,51,52,53,55,57,58,59,61,62,67,68,69, %U A325367 71,73,74,75,76,77,79,82,83,85,86,87,89,91,92,93,94,95,97 %N A325367 Heinz numbers of integer partitions with distinct differences between successive parts (with the last part taken to be zero). %C A325367 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325367 The enumeration of these partitions by sum is given by A325324. %H A325367 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325367 The sequence of terms together with their prime indices begins: %e A325367 1: {} %e A325367 2: {1} %e A325367 3: {2} %e A325367 4: {1,1} %e A325367 5: {3} %e A325367 7: {4} %e A325367 9: {2,2} %e A325367 10: {1,3} %e A325367 11: {5} %e A325367 13: {6} %e A325367 14: {1,4} %e A325367 15: {2,3} %e A325367 17: {7} %e A325367 19: {8} %e A325367 20: {1,1,3} %e A325367 22: {1,5} %e A325367 23: {9} %e A325367 25: {3,3} %e A325367 26: {1,6} %e A325367 28: {1,1,4} %t A325367 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325367 Select[Range[200],UnsameQ@@Differences[Append[primeptn[#],0]]&] %Y A325367 Positions of squarefree numbers in A325390. %Y A325367 Cf. A056239, A112798, A130091, A320348, A325324, A325327, A325362, A325364, A325366, A325368, A325388, A325405, A325407, A325460, A325461. %K A325367 nonn %O A325367 1,2 %A A325367 _Gus Wiseman_, May 02 2019