cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325367 Heinz numbers of integer partitions with distinct differences between successive parts (with the last part taken to be zero).

This page as a plain text file.
%I A325367 #6 May 02 2019 16:04:49
%S A325367 1,2,3,4,5,7,9,10,11,13,14,15,17,19,20,22,23,25,26,28,29,31,33,34,35,
%T A325367 37,38,39,41,43,44,45,46,47,49,50,51,52,53,55,57,58,59,61,62,67,68,69,
%U A325367 71,73,74,75,76,77,79,82,83,85,86,87,89,91,92,93,94,95,97
%N A325367 Heinz numbers of integer partitions with distinct differences between successive parts (with the last part taken to be zero).
%C A325367 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325367 The enumeration of these partitions by sum is given by A325324.
%H A325367 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A325367 The sequence of terms together with their prime indices begins:
%e A325367    1: {}
%e A325367    2: {1}
%e A325367    3: {2}
%e A325367    4: {1,1}
%e A325367    5: {3}
%e A325367    7: {4}
%e A325367    9: {2,2}
%e A325367   10: {1,3}
%e A325367   11: {5}
%e A325367   13: {6}
%e A325367   14: {1,4}
%e A325367   15: {2,3}
%e A325367   17: {7}
%e A325367   19: {8}
%e A325367   20: {1,1,3}
%e A325367   22: {1,5}
%e A325367   23: {9}
%e A325367   25: {3,3}
%e A325367   26: {1,6}
%e A325367   28: {1,1,4}
%t A325367 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325367 Select[Range[200],UnsameQ@@Differences[Append[primeptn[#],0]]&]
%Y A325367 Positions of squarefree numbers in A325390.
%Y A325367 Cf. A056239, A112798, A130091, A320348, A325324, A325327, A325362, A325364, A325366, A325368, A325388, A325405, A325407, A325460, A325461.
%K A325367 nonn
%O A325367 1,2
%A A325367 _Gus Wiseman_, May 02 2019