cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325368 Heinz numbers of integer partitions with distinct differences between successive parts.

This page as a plain text file.
%I A325368 #4 May 02 2019 16:04:56
%S A325368 1,2,3,4,5,6,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23,25,26,28,29,
%T A325368 31,33,34,35,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,55,57,58,59,
%U A325368 61,62,63,65,66,67,68,69,70,71,73,74,75,76,77,78,79,82,83
%N A325368 Heinz numbers of integer partitions with distinct differences between successive parts.
%C A325368 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325368 The enumeration of these partitions by sum is given by A325325.
%H A325368 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A325368 Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
%e A325368     8: {1,1,1}
%e A325368    16: {1,1,1,1}
%e A325368    24: {1,1,1,2}
%e A325368    27: {2,2,2}
%e A325368    30: {1,2,3}
%e A325368    32: {1,1,1,1,1}
%e A325368    36: {1,1,2,2}
%e A325368    40: {1,1,1,3}
%e A325368    48: {1,1,1,1,2}
%e A325368    54: {1,2,2,2}
%e A325368    56: {1,1,1,4}
%e A325368    60: {1,1,2,3}
%e A325368    64: {1,1,1,1,1,1}
%e A325368    72: {1,1,1,2,2}
%e A325368    80: {1,1,1,1,3}
%e A325368    81: {2,2,2,2}
%e A325368    88: {1,1,1,5}
%e A325368    90: {1,2,2,3}
%e A325368    96: {1,1,1,1,1,2}
%e A325368   100: {1,1,3,3}
%t A325368 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A325368 Select[Range[100],UnsameQ@@Differences[primeptn[#]]&]
%Y A325368 Cf. A056239, A112798, A130091, A240026, A325325, A325328, A325352, A325360, A325361, A325366, A325367, A325405, A325456, A325457.
%K A325368 nonn
%O A325368 1,2
%A A325368 _Gus Wiseman_, May 02 2019