This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325368 #4 May 02 2019 16:04:56 %S A325368 1,2,3,4,5,6,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23,25,26,28,29, %T A325368 31,33,34,35,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,55,57,58,59, %U A325368 61,62,63,65,66,67,68,69,70,71,73,74,75,76,77,78,79,82,83 %N A325368 Heinz numbers of integer partitions with distinct differences between successive parts. %C A325368 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325368 The enumeration of these partitions by sum is given by A325325. %H A325368 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A325368 Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins: %e A325368 8: {1,1,1} %e A325368 16: {1,1,1,1} %e A325368 24: {1,1,1,2} %e A325368 27: {2,2,2} %e A325368 30: {1,2,3} %e A325368 32: {1,1,1,1,1} %e A325368 36: {1,1,2,2} %e A325368 40: {1,1,1,3} %e A325368 48: {1,1,1,1,2} %e A325368 54: {1,2,2,2} %e A325368 56: {1,1,1,4} %e A325368 60: {1,1,2,3} %e A325368 64: {1,1,1,1,1,1} %e A325368 72: {1,1,1,2,2} %e A325368 80: {1,1,1,1,3} %e A325368 81: {2,2,2,2} %e A325368 88: {1,1,1,5} %e A325368 90: {1,2,2,3} %e A325368 96: {1,1,1,1,1,2} %e A325368 100: {1,1,3,3} %t A325368 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A325368 Select[Range[100],UnsameQ@@Differences[primeptn[#]]&] %Y A325368 Cf. A056239, A112798, A130091, A240026, A325325, A325328, A325352, A325360, A325361, A325366, A325367, A325405, A325456, A325457. %K A325368 nonn %O A325368 1,2 %A A325368 _Gus Wiseman_, May 02 2019